
333333333 3333

AVS
USER’S
GUIDE333333333333

Release 4
May, 1992

Advanced Visual Systems Inc.33333333
Part Number: 320-0011-02, Rev B

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject
to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be
transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT,
INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR
SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC.
WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS
DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED
TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete,
current or correct, and are subject to change without notice. The reader should consult AVS Inc. for more
detailed and current information.

Copyright  1989, 1990, 1991, 1992
Advanced Visual Systems Inc.

All Rights Reserved

AVS is a trademark of Advanced Visual Systems Inc.

STARDENT is a registered trademark of Stardent Computer Inc.
IBM is a registered trademark of International Business Machines Corporation.

AIX, AIXwindows, and RISC System/6000 are trademarks of International
Business Machines Corporation.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.

HP is a trademark of Hewlett-Packard.
CRAY is a registered trademark of Cray Research, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International.

SPARCstation is a registered trademark of SPARC International,
licensed exclusively to Sun Microsystems, Inc.

OpenWindows, SunOS, XDR, and XGL are trademarks of Sun Microsystems, Inc.
UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

Motif is a trademark of the Open Software Foundation.
IRIS and Silicon Graphics are registered trademarks of Silicon Graphics, Inc.

IRIX, IRIS Indigo, IRIS GL, Elan Graphics, and Personal IRIS are trademarks of Silicon Graphics, Inc.
Mathematica is a trademark of Wolfram Research, Inc.

X WINDOW SYSTEM is a trademark of MIT.
PostScript is a registered trademark of Adobe Systems, Inc.

FLEXlm is a trademark of Highland Software, Inc.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227–7013.

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this
computer software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in
the Commercial Computer Software — Restricted Rights clause at FAR 52.227–19(c)(2).

Advanced Visual Systems Inc.
300 Fifth Ave.

Waltham, MA 02154

AVS USER’S GUIDE CONTENTS-1

TABLE
OF
CONTENTS

1 Introduction to AVS

Introduction 1-1
Scientific Visualization Techniques 1-3

Pixel-Based Visualization 1-3
Colormap Lookup 1-3
Further Pixel Processing 1-4
High-Quality Pixel-Based Visualization 1-4

Geometry-Based Visualization 1-4
The AVS Subsystems 1-5
Command Language Interpreter 1-6
AVS Modules 1-6

Modules: Ports and Parameters 1-7
Data Inputs 1-8
Input Parameters 1-9
Data Outputs 1-11
Subroutine Modules and Coroutine Modules 1-11
Standard Modules and Module Libraries 1-12
User-Written Modules 1-12

AVS Networks 1-12
Data Flow in an AVS Network 1-13
Network Control Panel 1-15

AVS Display Windows 1-15
An Example 1-15

 Mapper Modules: Geometries 1-16
Compositing Mapping Techniques 1-17

Mapper Modules that Produce Images 1-19
Combining Imaging Techniques 1-21

Producing Graphs 1-22
Techniques Combined 1-24
Curvilinear, Vector Data 1-24

Note on Platforms 1-25
AVS Documentation 1-26

TABLE OF CONTENTS

CONTENTS-2 AVS USER’S GUIDE

2 Importing Data into AVS

Introduction 2-1
AVS Data Types 2-1

Primitive Data 2-2
byte 2-2
integer 2-2
single-precision floating point 2-2
double-precision floating point 2-2
text strings 2-3

Aggregate Data 2-3
Field Data 2-3
Geometric Data 2-3
Unstructured Cell Data 2-4
Molecule Data Type 2-4
Colormap Data 2-4

AVS Data Type Reference Table 2-4
Data Import Strategies 2-5
Field Data 2-7

Uniform Fields 2-8
Rectilinear Fields 2-9
Irregular Fields 2-10
AVS Data Interchange Application: ADIA 2-12
AVS Module: read field 2-12

Native Field Input 2-12
ASCII Header 2-13
Separator Characters 2-13
Binary Area 2-13
Example 1 2-14
Example 2 2-15
Example 3 2-15

Data-Parsing Input 2-16
ASCII Description File 2-17

Example 1 2-22
Example 2 2-23
Example 3 2-24
Example 4 2-25
Example 5 2-25

Hints on Using read field 2-26
read field Limitations 2-27

AVS Module: read plot3d 2-28
AVS Module: read image 2-29

read image Data File Format 2-29
AVS Module: read volume 2-30

read volume Data File Format 2-30
Programming Examples 2-31

Geometry Data 2-32

 TABLE OF CONTENTS

AVS USER’S GUIDE CONTENTS-3

AVS Module: geometry viewer 2-33
AVS Module: read geom 2-34
AVS Module: pdb to geom 2-34
AVS Geometry Filters 2-35

Automatic Data Filtering 2-36
Shell-Level Usage of Geometry Filter Utilities 2-36
Postprocessor Filters 2-37

Programming Examples 2-38
Unstructured Cell Data 2-39

AVS Module: read ucd 2-39
ASCII UCD File Format 2-39
Example ASCII UCD File 2-41

Programming Examples 2-42
read_ucd.c 2-42
gen_ucd.f 2-42
ucd_thresh.c 2-42
ucd_extract.c 2-42

Colormap Data 2-43
AVS Module: generate colormap 2-43

Molecule Data Type 2-44
AVS Module: Read structure file 2-45

3 Starting AVS

Introduction 3-1
Platform Dependencies 3-1
Controlling AVS Startup 3-2
The Main Menu: Basic Interface 3-4

Subsystem Control Panels 3-4
Switching Among the Subsystems: Data Viewers Button 3-6
Cancelling Operations 3-7

Learning AVS 3-7
AVS Demo Suite 3-7
The Data Viewer 3-8

Using On-Line Help 3-8
Help Buttons 3-8
Module Editor 3-11
Shell-Level Help 3-11

File Browsers and Dialog Typein Panels 3-11
Exiting AVS: Saving Work 3-13
AVS Command-Line Options 3-14
AVS .avsrc Startup File 3-20

.avsrc Startup File Format 3-21

.avsrc Startup File Keywords 3-21
AVS Environment Variables 3-26
Adding to the Applications Menu 3-28

TABLE OF CONTENTS

CONTENTS-4 AVS USER’S GUIDE

4 Image Viewer Subsystem

Introduction 4-1
Entering the Image Viewer 4-3
Leaving the Image Viewer 4-4
Image Viewer: Basic Layout 4-4

Image Viewer Control Panel 4-5
Top Control Bar 4-6
Transform Selection Controls 4-6
Current Image Controls 4-8
Function Key Usage 4-10
Menu Selection Controls 4-11
Submenu Controls 4-11

Viewport Windows and Scenes 4-12
Transforming Viewports 4-12
Current Viewport: Switching Among Viewports 4-13
Resizing Viewports 4-14

Browsers 4-14
Images Submenu 4-14

Read Image 4-15
Write Image 4-16
Duplicate Image 4-16
Delete Image 4-17
Show Image/Hide Image 4-17
Zoom In/Zoom Out 4-17
Raise/Lower: Image Stacking Order 4-18
Raise to Front/Lower to Back 4-19
Color Dithering Options 4-19

Views Submenu 4-20
Create Scene 4-20
Create View 4-21
Delete View and Deleting Scenes 4-21
Save Scene 4-21
Read Scene 4-22
Scale X, Y, X and Y 4-22
Edit Background Color 4-23

Image Processing Submenu 4-24
Basic Procedure: Select Processing Technique 4-25
Zoom to Image: Techniques on Whole Images 4-26
Shift-Left Mouse Button: Techniques on Subimages 4-27
In Place/New Window 4-28
Set Current Image: Multiple Techniques on One Image 4-29
Restore Current Image 4-30
Raise Control Panel: Window Management 4-30
Select Processing Technique 4-31

Limitations 4-32

 TABLE OF CONTENTS

AVS USER’S GUIDE CONTENTS-5

Defining Image Processing Techniques 4-33
Labels Submenu 4-34

Current Label: Creating Labels 4-34
Editing a Label 4-35
Picking and Moving a Label 4-36
Title: Making a Label Into a Title 4-36
Label Menu Selection 4-36

Action Submenu: Flipbook Animation 4-39
Size: A Caution 4-40
Store Frames 4-41
Append Frame 4-41
Total Frames 4-41
Current Frame 4-41
Step Forward/Step Backward 4-41
Continuous 4-42
Bounce 4-42
Replay Speed 4-42
Delete Current Frame 4-42
Save Cycle 4-42
Read Cycle 4-43
A Network for Geometries 4-43

Image Viewer Command Language Interpreter 4-43

5 Geometry Viewer Subsystem

Introduction 5-1
Renderers 5-2
Entering the Geometry Viewer 5-4

Spaceballs and Dialboxes 5-5
Leaving the Geometry Viewer 5-5
Scenes, Objects, Lights, and Cameras 5-6
Objects 5-7

Where Objects Appear in World Space 5-8
Geometry Viewer Control Panel 5-9

Top Control Bar 5-9
Transform Selection Area 5-9
Mouse Transformations 5-12

Transforming Objects 5-12
Transforming Lights 5-13
Transforming Cameras 5-14
Transforming Texture Maps 5-15
Transforming Labels 5-16

Precise Transformations 5-16
Degree of Rotation: Arrow Keys 5-17
Absolute and Relative 5-17
Override 5-19

TABLE OF CONTENTS

CONTENTS-6 AVS USER’S GUIDE

Bounding Box 5-19
Current Object Area 5-20

Current Object Indicator 5-20
Current Object Browser 5-21

Renaming Objects with the Current Object Browser 5-22
Additional Transformations 5-22

Function Key Usage 5-23
Dial Box Usage 5-24
Spaceball Usage 5-24

Geometry Viewer Menu Reference 5-26
Objects 5-26

Read Object 5-26
Save Object 5-29
Delete Object 5-30
Edit Property 5-30
Edit Texture 5-33

Steps in Using AVS Texture Mapping 5-36
The Dynamic Texture 5-37

Object Info 5-37
Show Object/Hide Object 5-38
Points 5-38
Lines 5-39
Smooth Lines 5-40
No Lighting 5-40
Flat Shading 5-40
Gouraud Shading 5-40
Outline Gouraud 5-40
Phong Shading 5-40
Inherit 5-40
Backface Properties 5-40
Subdivision 5-41
Inherit 5-42

Lights 5-42
Light On/Light Off 5-43
Directional/Point/Bi-Directional/Spot 5-44
Show Lights 5-45
Color of Light 5-46

Cameras 5-46
Cameras Defined 5-46
Create Scene 5-48
Create Camera 5-48
Delete Camera 5-48
Read Scene/Save Scene 5-49
Hardware Renderer/Software Renderer 5-50
Depth Cue 5-50
Z Buffer 5-50
Perspective 5-51
Accelerate 5-52

 TABLE OF CONTENTS

AVS USER’S GUIDE CONTENTS-7

Axes for Scene 5-52
Front/Back Clipping 5-52
Double Buffer 5-53
Sort Transparency 5-53
Global Antialiasing 5-53
Polygonal Spheres 5-53
Freeze Camera 5-54
Show Camera 5-54
Camera Width/Height Typeins 5-54
Edit Background Color 5-55
Camera Options Panel 5-55

Labels 5-58
Creating Labels 5-59

Labeling the Top Level Object 5-60
Picking and Moving a Label 5-60

Align to Vertex/Align to Point 5-61
Making a Label Into a Title 5-61

Editing/Deleting a Label 5-61
Changing Label Attributes: Label Menu Selections 5-62

Font Selection Submenu 5-62
Label Attributes Submenu 5-62

Action 5-63
Playing Back the Frames 5-63
Adding Frames 5-64
Animating More Than One Object 5-65
Deleting Frames 5-66

Geometry Viewer Command Language Interpreter 5-66
High Quality Image Output 5-67

6 Network Editor Subsystem

Introduction 6-1
Starting the Network Editor 6-2

Getting Help 6-2
Closing the Network Editor 6-3
Switching Subsystems 6-4
Status Widget 6-4
Overview of Network Editor Usage 6-4

Using the Module Palette and the Workspace 6-5
Module Types 6-6
Module Input/Output Ports 6-7
Finding the Module You Want 6-7

Scrolling a Module List 6-8
Incremental Search Through a Module Category 6-8
Making the Module Palette Larger 6-9

Moving Icons into the Workspace: Left Button 6-9

TABLE OF CONTENTS

CONTENTS-8 AVS USER’S GUIDE

Moving Modules within the Workspace 6-10
Deleting Modules from the Workspace 6-11

Connecting Modules: Middle Button 6-11
Disconnecting Modules: Right Button 6-12
Completing a Network 6-12

Input/Output Ports 6-13
Data Ports 6-13
The Module Editor and Parameter Editor Windows 6-13

The Port Editor 6-16
The Parameter Editor 6-16

Port Color-Coding 6-17
Connecting Field Ports 6-18

Controlling the Execution of a Network 6-20
Cancelling an Operation 6-21
Module Restart Option 6-22
Using Control Widgets 6-23

Using Type-In Controls 6-23
Using Dial Controls 6-24

The Dial Editor 6-25
Using Slider Controls 6-27
Using a Set of Choices (Radio Buttons) 6-28
Using Toggle Controls 6-28
Using Tristate Controls 6-28
Using Oneshot Controls 6-29
Using File Browser Controls 6-29
Other Browsers 6-30
Using the Colormap Control 6-31
composite 6-32
edit 6-32
Lo Value/High Value 6-34
Read/Write 6-35

Organizing a Network’s Display Windows 6-35
Picture Size and Window Size 6-35
Using the Window Manager 6-36
Using a Display Window’s Pulldown Menu 6-37

Using the Network Editor Menu System 6-37
Network Tools 6-39
Module Tools 6-41
Editing Tools 6-43
Layout Editor 6-43

7 Graph Viewer Subsystem

Introduction 7-1
Entering the Graph Viewer 7-2
Graph Viewer—Basic Interface 7-3

 TABLE OF CONTENTS

AVS USER’S GUIDE CONTENTS-9

Using the Graph Viewer 7-4
Multiple Plot Windows—The Current Window 7-4

Read Data 7-4
File Type Submenu 7-5
Plot Control Submenu 7-9
Data Formats Submenu 7-10

Plot as Y Data 7-11
Plot as XY Data 7-12
Plot as Contour Data 7-14

Color Selection 7-15
Contour Level Selection 7-16

Using Column Data for Color Control 7-16
Plot Styles Submenu 7-18

Line plots 7-18
Area plots 7-18
Scatter plots 7-18
Bar plots 7-18

Delete Plot Window 7-18
Write Data 7-18

File Type Submenu 7-19
Output Image 7-21

Axis Display 7-21
Border Display 7-21
Axis Selection 7-21
Axis Scale 7-21
Axis Range 7-23
Axis Tic Marks 7-23
Number of Tics 7-23
Decimal Precision 7-24

Titles, Labels & Legends 7-25
Label Display 7-25
Label Menu Selection 7-28

Font Selection 7-28
Label Attributes 7-29
Edit Label Color 7-29

Select Plot 7-29
Display Crosshair 7-29
Plot Attributes 7-31

Simple Line 7-31
Area 7-32
Scatter 7-32

Font Styles 7-32
Bar 7-33
Edit Line Color 7-33

Delete Plot Dataset 7-33
Cursor Position 7-33
Selected Point 7-34

Graph Viewer Command Language Interpreter 7-34

TABLE OF CONTENTS

CONTENTS-10 AVS USER’S GUIDE

8 Advanced Network Editor

Introduction 8-1
Parameter Ports 8-2

Connecting Parameter Ports 8-3
Creating the Connection 8-4

Upstream Data Ports 8-5
Connecting Upstream Data Ports 8-6

Editing Tools: Macro Modules 8-8
Selecting Module Subsets 8-8
Copy/Cut/Paste Modules 8-9
Macro Modules 8-9

Steps to Create a Macro Module 8-10
Creating a Macro Module 8-12
Editing Macro Module Category and Name 8-12
Saving Your Macro, Resuming Your Session 8-13
Canceling a Macro Module 8-13
Editing an Existing Macro Module 8-14
Modifying a Macro Module’s Widgets 8-14

Layout Editor 8-15
Elements of a Layout 8-17
Working with the Layout Editor 8-17
Including Display Windows in a Reorganized Layout 8-20
Using the Spaceball and Dialbox Managers 8-21

Remote Module Execution 8-23
Remote System 8-24

Setting Up A Remote Module Directory 8-25
Finding Remote Modules: the hosts file 8-26

hosts File Format 8-26
Network Editor User Interface 8-27

Constructing a Module Library 8-29
Sample Interactive Procedure 8-30
Compiled Module Libraries 8-32
Module Library File Format 8-33

Optimization: Parallel Module Execution 8-35
Optimization: Adaptive Block Tables 8-35
Optimization: Controlling Module Groups and Processes 8-36

 TABLE OF CONTENTS

AVS USER’S GUIDE CONTENTS-11

A AVS on Color X Servers

Introduction: Renderers A-1
Minimum Requirements A-2
Overall Performance A-3
Set Up: Startup File Keywords, and Environment Variables A-4

.avsrc.X Startup File A-4
Display Brightness: Xdefaults.X File and Gamma Keyword A-5
VisualType A-5
BoundingBox and Freeze Camera A-6
Changing the Entire Interface Size A-6
Colors: Colormap Cell Allocation A-7

Starting AVS from a Remote X Server A-7
Software Renderer A-8

Interaction A-8
Image Viewer A-8
Graph Viewer A-9
Geometry Viewer A-9
Network Editor A-10

B Geometry Viewer Script Language

Prolog B-1
Introduction B-1
Scene Files and Object Files B-2
Script Language Commands B-2

Object Commands B-3
The read Command B-3
The read_subset Command B-3
The group Command B-4
The cycle Command B-4
The set_color Command B-5
The set_matrix Command B-5
The set_position Command B-5
The set_material Command B-5
The set_render_style Command B-5
The rotate Command B-5
The translate Command B-6
The scale Command B-6

Viewing Commands B-6
The view Command B-6
The set_matrix Command B-6
The set_position Command B-6
The rotate Command B-6

TABLE OF CONTENTS

CONTENTS-12 AVS USER’S GUIDE

The translate Command B-7
The scale Command B-7
The depth_cue Command B-7
The inactive Command B-7
The no_zbuffer Command B-7

Geometry Viewer Defaults File B-7
Lighting Commands B-8

The light Command B-8
The set_matrix Command B-8
The set_position Command B-9
The set_color Command B-9
Example Scene File B-9

List of Tables

Table 1-1. Module Input Ports/AVS Data Types 1-8
Table 2-1. AVS Data Type/Application Cross Reference Table 2-5
Table 2-2. AVS-Readable Geometry File Formats: General Use 2-35
Table 2-3. AVS-Readable Geometry File Formats: AVS Specific 2-35
Table 2-4. Geometry Postprocessor Filters 2-38
Table 3-1. AVS Command Line Options, .avsrc Keywords,
 and Environment Variables 3-3
Table 4-1. Image Viewer Function Keys 4-10
Table 4-2. Sample Image Processing Techniques 4-31
Table 6-1. Color-Coding for Field Input/Output Ports 6-19
Table B-1. AVS Script Language Commands B-2

Acknowledgement

The data portayed in the Frontispieces to Chapters 4 and 7 was used courtesy
of the UCLA Department of Radiological Sciences.

INTRODUCTION TO AVS 1-1

CHAPTER 1 INTRODUCTION
TO
AVS

Introduction

The increasing power of supercomputers and graphics systems has made it
possible for the scientific and engineering communities to gain new insight
into their disciplines. In areas as diverse as fluid dynamics, computer-aided
engineering, molecular modeling, and geophysics, researchers are applying
these powerful systems to analyze and view their data, using real-time inter-
active display techniques.

A limiting factor in this growing field has been the existing software tools,
which require specialized programming expertise and great expense, both in
time and in money. The Application Visualization System (AVS) addresses
this problem, allowing researchers to apply the hardware power to their prob-
lems without requiring programming expertise or a great investment of time.

AVS users can construct their own visualization applications, by combining
software components into executable flow networks. The components, called
modules, implement specific functions in the visualization cycle:

• Filtering the basic data into a more usable form (more informative, small-
er, etc.)

• Mapping the filtered data into either: geometric primitives (triangles,
lines, spheres, etc.) that when combined together produce a three-dimen-
sional geometry representation of the data; or mapping the data into pixels
(dots of color) that when combined together produce a two-dimensional
picture or image representation of the data.

• Rendering the 3D geometries or 2D images into pictures on the display
screen.

The flow networks are built from a menu of modules by using a direct-manip-
ulation, visual programming interface called the AVS Network Editor. With
the Network Editor, the user produces an application by selecting a group of
modules and drawing connections between them. In many cases, users can
construct an entire visualization application, using standard modules and
without resorting to traditional procedural programming.

The user views, organizes, and further processes the output of a network
through one of the AVS subsystems. The Geometry Viewer displays 3D geo-

Introduction

1-2 INTRODUCTION TO AVS

metric objects. The Image Viewer displays 2D images. The Graph Viewer
creates XY and contour graphs of data.

AVS includes a rich set of modules for construction of networks. AVS also rec-
ognizes that it is in the nature of scientific research and visualization to go be-
yond the bounds of an application. AVS allows users to create their own new
modules to meet their specific needs and dynamically load them into AVS
networks. The AVS Module Generator can be used to automatically generate
module code in C or FORTRAN. Users need not have detailed knowledge of
the AVS implementation or expertise in disciplines outside their areas of in-
terest.

Modules are "software building blocks" with well-defined interfaces, written
either in FORTRAN or in C. The overall structuring of the application is han-
dled on the AVS level; the computational details are handled within modules
as FORTRAN or C procedures.

Modules take typed data as inputs and produce typed data as outputs. The
basic data types in the system are oriented toward scientific data manipula-
tion and graphic display. These types include:

• 1D, 2D, and 3D grids of numbers with scalar values or vectors of byte, in-
teger, or floating-point values at each grid point. The grids can be regular
(uniform) or nonregular—where the distance between the grid points is
variable (rectilinear). It is also possible for the grid to describe a curved or
arbitrarily deformed space (curvilinear), or an arbitrary list of points in 3D
space (scatter data). This type of data is called a field.

• unstructured cell data
• geometric data
• images
• molecular data

For more information on this subject, see the "Importing Data into AVS" chap-
ter.

In addition to input and output data, modules also have parameters that con-
trol the module’s computation. Once the structure of the application has been
established, AVS executes the network, allowing the user to interact with the
application by navigating through the network diagram and interacting with
various modules through their individual parameters. AVS generates the
"control panel" user interface to a module automatically, by associating pa-
rameters with either graphical control panels (buttons, sliders, etc) or periph-
eral input devices (dial boxes, spaceball, etc.).

The remainder of this chapter presents an overview of the AVS approach to
the challenge of scientific visualization.

Scientific Visualization Techniques

INTRODUCTION TO AVS 1-3

Scientific Visualization Techniques

AVS implements two basic strategies for translating numerical data into color
images. In the pixel-based method, data points become pixels, more or less di-
rectly. In the geometry-based method, the numerical data is converted to de-
scriptions of 3D geometric objects. These are, in turn, turned into color images
by the machine’s low-level graphics software and rendering hardware.

These two strategies are described further in the sections that follow.

Pixel-Based Visualization

The essence of the pixel-based visualization strategy is simple: take a "raw"
data value and translate it into a number that represents a color. In AVS, this
translation is accomplished with a table lookup, called a colormap. You can de-
fine, save, and retrieve your own colormaps. AVS includes an interactive Col-
ormap Editor drawing tool for generating colormaps conveniently and
quickly.

Colormap Lookup

An AVS colormap is usually a 256-row table; each row specifies a 24-bit "true-
color" value (and, optionally, an 8-bit auxiliary field that defines opacity/
transparency), as shown in Figure 1-1. A colormap lookup consists of using
an input value to select a particular row of the table. The color value in that
row is the result of the lookup.

By default, AVS colormaps accept byte data as input values. Each byte is con-
sidered to be an unsigned integer (0..255) which specifies a particular row of
the table. However, you can also have AVS automatically scale the colormap
to any integer or floating point data range. Where colors are not desired, a
gray-shade colormap can be used.

first color value

color value

color value

color value

last color value

input value

(0..255)
selects row of

colormap table

2

254

255

1

0

 Figure 1-1 AVS Colormap Lookup

Scientific Visualization Techniques

1-4 INTRODUCTION TO AVS

AVS colormaps are independent of the hardware colormaps used by low-lev-
el graphics software. All AVS colormaps produce 24-bit "true color" output. If
necessary, further translation takes place automatically—for instance, to pro-
duce images on a display with only 8 or 12 color planes.

Further Pixel Processing

If multi-dimensional data is converted to pixels, the results must somehow be
reduced to 2D before they can be displayed as an image onscreen. AVS pro-
vides several ways to perform such reductions:

Slicing
A 2D cross-section can be made through a 3D block of pixels (orthogonal
slicer module).

Blending
If a 3D block of pixels is passed though a colormap whose auxiliary field
contains opacity/transparency data, pixels can be blended along the line
of sight. This produces a 2D picture of what appears to be a solid or semi-
transparent object in space (tracer module).

High-Quality Pixel-Based Visualization

In simple pixel-based visualization, each data point corresponds to a single
pixel. When the user "zooms in" on a particular portion of the image, the mag-
nification is performed by pixel replication. (For instance, a single pixel value
may be used throughout a 6x6 patch in a zoomed image.)

A variety of techniques can be used to improve image quality: high-order in-
terpolation of data values, antialiasing of pixel values, 3D texture mapping,
etc. In addition, 3D graphics techniques such as lighting, shading, and per-
spective viewing can be used to compute the interpolated pixel values.

Geometry-Based Visualization

AVS’s other strategy for turning numbers into pictures brings all the power
and flexibility of interactive 3D graphics to the visualization arena. The raw
data values (or, more likely, a subset of the values) are mapped into the verti-
ces of geometric objects. The values are used to assign colors to the vertices,
using AVS colormaps. Then, the graphics subsystem creates color images
from the geometric descriptions.

There are many techniques for creating geometric descriptions, or geometries,
from raw data. For instance:

• Represent each atom of a molecule as a sphere. Assign color and transpar-
ency to the sphere based on the type of atom.

• Given a set of data that specifies the temperature at many points within a
volume, use all the points at a given temperature to define an isosurface
(isosurface module).

The AVS Subsystems

INTRODUCTION TO AVS 1-5

• Given a set of data that specifies the wind velocity at many points within
a volume, use arrows to represent the velocity at each point on an arbi-
trary plane within the volume (hedgehog module).

• Given wind velocity data as above, construct flow lines to represent the
motion of an object through the field (stream lines module).

The AVS Subsystems

AVS’s main menu shows its major subsystems:

Image Viewer
The Image Viewer subsystem is a high-level tool for manipulating and
viewing images.

Graph Viewer
The Graph Viewer subsystem is a tool for creating 2D linear and contour
graphs of data.

Geometry Viewer
The Geometry Viewer subsystem allows you to view and interact with
geometrically-defined objects. The objects must have been created by pro-
grams or AVS modules that use AVS’s geom programming library. You
can transform the objects themselves (move, rotate, scale); you can
change the viewing parameters (e.g. move the eye point, perspective
view, etc.); and you can control the way in which the graphical images are
rendered (lighting and shading, Z-buffering, etc.). Multiple objects, such
as an isosurface and a slice plane, can be combined into a single scene de-
picted in a display window.

3D graphics rendering techniques (lighting models, 2D and 3D texture
mapping, automatic removal of hidden surfaces, sphere rendering, etc.)
rely heavily on the underlying capabilities of an individual platform’s
graphics subsystem, both hardware and software. Platforms differ in
their support of these techniques. AVS attempts to use all of the graphics
functionality present on a platform. Where hardware graphics rendering
is not available, AVS uses a software renderer.

Network Editor
The Network Editor subsystem is a visual programming interface for
connecting computational modules together into networks to perform vi-
sualization functions. Modules and networks are discussed in the sections
that follow.

Each of these subsystems is described in its own chapter later in this manual.
In addition, the main menu includes an Applications option:

Applications
Applications produces another menu of choices. AVS comes with two
prepared applications, the AVS Demo suite, and the Data Viewer. Both

Command Language Interpreter

1-6 INTRODUCTION TO AVS

applications are primarily useful to the new AVS user learning visualiza-
tion techniques, terminology, and the AVS interface.

The Demo suite provides push-button access to a series of demonstration
scripts that illustrate the AVS interface (Geometry Viewer, Image Viewer,
Network Editor, and Graph Viewer); scientific visualization techniques;
AVS as it can be applied in various fields such as medical imaging and
computational fluid dynamics; and AVS modules. The Demo suite is de-
scribed in the AVS Tutorial Guide.

The Data Viewer is a simplified user interface to AVS’s most commonly-
used scientific visualization techniques. It provides a pulldown menu in-
terface from which the user selects input, filtering, mapping, and data
output techniques. Using the sample datasets in the /usr/avs/data direc-
tory, you can perform significant visualization functions with just a few
clicks of the mouse. The Data Viewer is described in the AVS Applications
Guide

Users can add their own applications to the Applications menu (see the
"Starting AVS" chapter).

Command Language Interpreter

The Image Viewer, Geometry Viewer, Graph Viewer, and Network Editor can
also be driven through a Command Language Interpreter (CLI). You can type
CLI commands in response to a prompt and interactively view the results,
you can create a command script file that executes automatically, and you can
write a module that sends CLI commands to the Image Viewer, Geometry
Viewer, Graph Viewer, and the Network Editor via the AVS kernel.

The CLI also supports a journaling facility in the Network Editor. With jour-
naling switched on, AVS will record most of your actions in the Network Edi-
tor into an ASCII file than can be edited to produce a automated
demonstration. This technique was used to produce the illustrative scripts
stored in the /usr/avs/demo/man_scripts directory, accessible through the Help
facility’s Help Demos button.

See the "Command Language Interpreter" chapter in the AVS Developer’s
Guide.

AVS Modules

The module is the AVS computational unit. Each module accepts data as input
and generates other data as output. To create an AVS application, you connect
a group of modules into a network. The connections represent the flow of data
among the modules. Typically, the data originates in one or more disk files,
but it can also be supplied by an "external" program, running on the same ma-
chine or on another machine in the local network. The data is typically trans-
formed into one or more images by a collection of modules, and finally is

AVS Modules

INTRODUCTION TO AVS 1-7

displayed in a window onscreen. Figure 1-2 shows a simple network of mod-
ules.

AVS modules can execute locally on the same host system as the AVS pro-
gram, or modules can execute remotely—on another host of the same (homo-
geneous) or different (heterogeneous) hardware type that runs AVS. An AVS
module, compiled, linked, and stored on the remote host, is easily added to
any AVS network. This remote module might be a data read and transform
process, or a simulation that executes most efficiently on a network compute
server.

The remainder of this section discusses the characteristics of individual AVS
modules. Networks of modules are discussed in the following section.

Modules: Ports and Parameters

Each AVS module is designed to be a powerful, flexible, easy-to-use process-
ing component. A module is general in its functionality, so that you can use it
in a variety of application contexts. Each module does a substantial amount of
processing, so that networks need contain only small number of modules to
do real, useful work.

You can include a particular module in any number of AVS applications (net-
works); you can even include the same module more than once in a single net-
work.

this module generates
its own data

this module reads data
from a disk file

this module accepts
two data inputs and
generates one output

this module creates a
2D ray traced image
of the 3D data

this module displays
an image in a window

tracer

image viewer

read volume

colorizer

generate
colormap

 Figure 1-2 Simple Network of AVS Modules

AVS Modules

1-8 INTRODUCTION TO AVS

The key to the modular approach to application building is that each module
has a simple, consistent interface, which includes:

• A set of data inputs (some optional, some required).
• A set of input parameters that control the way the module processes its in-

put data or determines which data to use. One of AVS’s most powerful
features is that you can change parameter values interactively as a net-
work executes. Input parameters can themselves be made into data input
ports and receive values from other modules.

• A set of data outputs.

Some modules have no input ports at all. Such modules create their own data,
or read data in from a source that is external to the AVS network (e.g. a disk
file).

When you use AVS to create a network, each module’s interface is represent-
ed visually by a module icon (Figure 1-3) and a control panel (Figure 1-4). The

module icon is a rectangle, labeled with the module’s name. Each data input
is represented by an input port along the top edge. Each data output is repre-
sented by an output port along the bottom edge. Each input parameter is rep-
resented by a control widget (slider, dial, etc.); the controls are assembled in a
separate control panel window.

Data Inputs

A module accepts one or more data sets as input. Each data set must be of a
particular AVS data type: field, colormap, etc. The module doesn’t care where
its input data comes from, only that the data types are correct.

Each data input is represented on the module icon by a color-coded input
port, along the top edge of the icon. The color indicates the type of data that

Table 1-1. Module Input Ports/AVS Data Types

Port Color Data Type

red geometry
yellow colormap
light blue pixmap
multi-color field
orange unstructured cell data
magenta molecule data type
light purple integer
dark purple floating point
green string
white user defined data

 Figure 1-3 Module’s Interface: Icon

AVS Modules

INTRODUCTION TO AVS 1-9

the port accepts (Table 1-1.). AVS checks data types as you interactively build
a network, making sure that the connection between two modules is valid.
When you begin to establish a module-to-module connection, AVS shows you
the valid possibilities.

Input Parameters

A module’s data inputs determine the type of data it processes, while its in-
put parameters determine how the data is to be processed.

The following examples use the modules shown in Figure 1-2 to illustrate sev-
eral types of parameters:

• The read volume module brings a 3D block of byte values into a network.
Its input parameter specifies the file from which the values are to be read.

• The generate colormap module creates and outputs a colormap that de-
fines the map used to transform data values into color values. Its input

 Figure 1-4 Module’s Interface: Control Panel

AVS Modules

1-10 INTRODUCTION TO AVS

parameter is implemented as an interactive "colormap editor", with
which you specify the 256-entry colormap.

• The tracer module reduces a 3D block of partially-transparent color val-
ues to a 2D image using a ray tracing algorithm. Its input parameters con-
trol the size of the output image, the opacity, the interpolation method
used, and the global perspective.

• The image viewer module is the AVS Image Viewer. It displays the out-
put image. It includes facilities for composing scenes of multiple images,
of saving images to disk, for performing image processing techniques
upon the image output of other modules, and for creating flipbook ani-
mations.

Parameters are the "control knobs" for a module. By "adjusting the knobs",
you can control the way in which a module processes its data—change the an-
gle of a cross-section plane or a rotation, change a coloring scheme, change
the way values are sampled from a large data set, enlarge an image to exam-
ine some detail, etc.

Each of a module’s parameters is represented by an onscreen control widget.
Figure 1-5. Figure 1-6, and Figure 1-7 present examples of control widgets.

 Figure 1-5 Module Control Widgets: Dial Widgets

 Figure 1-6 Module Control Widgets: Slider Widgwts

AVS Modules

INTRODUCTION TO AVS 1-11

AVS includes the following types of control widgets:

• Dials and sliders can be used to indicate integers or floating point values.
• Typeins allow you to specify a character string: title, label, filename, etc.

Typeins can also be used to specify numeric values: integers or floating-
point numbers.

• Toggles implement on/off switches for various parameters.
• Radio buttons (also called choices) implement sets of mutually exclusive

choices.
• File browsers allow you to specify a file to be read or written.

AVS also provides a set of Data Input modules that will produce each of the
standard parameter data types (integer, floating point, string, etc.) and send
them to other modules’ input parameter ports.

Data Outputs

Data outputs for modules are analogous to data inputs. Each data output is
represented on the module icon by a color-coded output port, along the bot-
tom edge of the icon. The color-coding is the same as for input ports.

Subroutine Modules and Coroutine Modules

There are two types of AVS modules, which differ in the way they fit into net-
works. A short explanation follows; for a more complete discussion, see the
AVS Developer’s Guide.

• Subroutine modules are essentially passive, like subroutines in a standard
program. When you execute a network, each subroutine module initializ-
es itself (a system process is created). But the module does not perform
any work (the process sleeps) until the AVS Flow Executive signals it. In
addition to "waking up" the module, the Flow Executive passes its input
data to it. When the module finishes computing, it passes the output data
back to the Flow Executive, then returns to its dormant state. Execution is
synchronous; one module is active at a time.

• Coroutine modules are active, not passive. Rather than being like a sub-
routine, a coroutine is an autonomous, cooperative process that can con-
tinually execute, passing data to the Flow Executive on its own initiative,
instead of doing so only when it is signalled. Coroutine modules typically

 Figure 1-7 Module Control Widgets: Typein Widgets

AVS Networks

1-12 INTRODUCTION TO AVS

implement computational simulations, such as repeatedly releasing parti-
cles to flow through a vector field.

Standard Modules and Module Libraries

The AVS product includes a large number of general-purpose modules. This
means that, often without any programming, you can begin to visualize your
data sets.

The modules can be grouped into module libraries, each of which contains a set
of modules designed to be used together. During an AVS session, you can
switch back and forth among module libraries easily. You can also rearrange
the libraries or create new ones, using an interactive module library editing
facility.

User-Written Modules

One of the most important aspects of the AVS system is its extensibility. Many
installations have already developed computer programs to process the raw
data. AVS makes it easy to turn such user-supplied programs into AVS mod-
ules. Once this is accomplished, the user-written module can be combined
with any other modules—AVS-supplied or user-written—to implement visu-
alization applications.

The AVS Module Generator is an interactive interface that will generate skel-
etal module source code in C or FORTRAN for subroutine or coroutine mod-
ules. Based upon user input to a series of menu panels, it automatically
creates the AVS library calls that will produce the interface to the module. It
uses "reserved areas" to show where user-supplied code is required. The
module writer can use the Module Generator to create modules, automatical-
ly produce Makefiles, compile and debug module code. The Module Genera-
tor is described in the AVS Applications Guide.

AVS Networks

Modules are the computational units in AVS. Networks are used to configure
modules together into a visualization application. To view in a particular
manner, you select the modules that perform the appropriate computations
and combine them into a network. You can save the network on disk, then re-
peatedly use it to visualize the same data, or any other data set of the same
form. After using AVS for some time, you will most likely maintain a group of
networks that, collectively, satisfy most of your visualization needs.

You create networks using the AVS Network Editor subsystem. The mouse-
driven interface allows you to interactively construct network diagrams, like
those illustrated above. To select a module, you drag its icon from a Palette
into a Workspace (Figure 1-8). To make and break connections between mod-
ules, you click-and-drag the mouse.

AVS Networks

INTRODUCTION TO AVS 1-13

At any time, you can save a network in a disk file, for later retrieval. Only the
network structure and the current settings of the input parameters are
saved—the data to be visualized is not part of the network, but is loaded
when the network executes.

Data Flow in an AVS Network

Figure 1-9 repeats Figure 1-2. This time, the figure emphasizes the top-to-bot-
tom way data flows through a typical AVS network.

The data-flow diagram reflects the scientific visualization process, which be-
gins with data and ends with onscreen images. Networks that use data stored
on disk begin with a "read data" module. (There are several such modules, to
accommodate the variety of AVS data types.) These modules allow you to
specify the name of a file containing the raw data. By selecting different files,
you can use the same network to visualize different data sets.

The network illustrated above has a simple structure and performs a (relative-
ly) simple task—reading a single data set and constructing a single image.
More complex networks can use multiple data sets, creating independent im-
ages or composite images. A network can consist of any number of indepen-
dent sub-networks. Figure 1-10 illustrates a more sophisticated network.

Modules in a network can execute in parallel when there are multiple proces-
sors available (including remote modules on remote hosts), the modules have
no input dependencies, are in different processes, and the user explicitly en-
ables this feature with the -parallel command line option.

Network
Control
Panel

Network
Editor
Menu

Module Palette

Workspace

resizing handle

 Figure 1-8 AVS Network Editor Windows

AVS Networks

1-14 INTRODUCTION TO AVS

Where a certain set of modules and connections are being used repeatedly,
modules can be grouped together to form macro modules. A macro module
appears in a network as a single module icon that the user interacts with in

tracer

image viewer

read volume

colorizer

generate
colormapdisk resident

data set(s)

typical transforms:
data-to-data
data-to-geometry
data-to-pixels

display visualization
images

 Figure 1-9 Data Flow in a Network

 Figure 1-10 Complex Network Structure

AVS Display Windows

INTRODUCTION TO AVS 1-15

the same manner as an individual module. Macro modules can be nested
within other macro modules to form hierarchies of arbitrary depth.

Networks may contain only one kind of "cycle": a module’s output data can
subsequently be fed back into the immediately previous module as input, us-
ing the upstream data mechanism. The two modules must agree on the data
structure they are communicating with. Upstream data ports and connections
are usually invisible.

Network Control Panel

A network’s data-flow diagram does not show one very important aspect of
network execution: the settings of the module’s input parameters. As you
construct a network, the control widgets that represent the parameters (and
allow you to control their values) are automatically assembled in the Network
Control Panel window along the left edge of the screen. See Figure 1-4.

By default, the control widgets are collected into pages, one page for each
module. You can redesign the layout of control widgets, however, to create
simpler and more convenient user interfaces to your networks. This allows
developers of networks to "package" their work so that even the most sophis-
ticated visualization tasks can be performed easily and reliably by users. This
facility is described in the "Layout Editor" section of the "Advanced Network
Editor" chapter.

You can also extend the Network Control Panel to include additional physical
input devices such as a dialbox and a spaceball. Certain types of input param-
eters can be associated with a dialbox or the spaceball, instead of with an on-
screen control widget.

AVS Display Windows

AVS creates its visualization images in display windows on the screen. (There is
also a provision for saving black and white and color versions of images in
PostScript files for printing, storage, or transfer to another site.) Each display
window is an X Window System window. This integration of AVS with X
means that you can move, resize, iconify, and otherwise manipulate display
windows using an X window manager. AVS also provides some window-ori-
ented functions, such as zoom and unzoom for pixel-based windows. You can
integrate display windows into the control panels of the visualization net-
works you build, creating predictable and space-efficient user interfaces.

An Example

The following series of figures illustrate using the Network Editor’s visual
programming interface to construct a series of visualization networks.

An Example

1-16 INTRODUCTION TO AVS

All of the networks use the same sample dataset, available online with the
AVS release in the file /usr/avs/data/field/hydrogen.fld. hydrogen.fld is a 64x64x64
uniform field, where each data value is a byte quantity from 0 to 255 that rep-
resents the probability of an electron occurring around the nucleus of a hy-
drogen atom.

Note: This same dataset also exists as a volume-format file in /usr/avs/data/vol-
ume/hydrogen.dat. We use its field representation because it has more general
applicability as an example.

With this single dataset, we illustrate:

• Three geometry-based visualization techniques. The mapper modules in-
volved (isosurface, arbitrary slicer, and volume bounds) produce 3D ge-
ometry output representations of the input data. These geometries are
assembled together and viewed through the AVS Geometry Viewer in its
geometry viewer module form.

• Two image-based visualization techniques. The mapper modules (or-
thogonal slicer and tracer) produce 2D colorized image output represen-
tations of the input data. These images are assembled together and
viewed through the AVS Image Viewer in its image viewer module form.

• Two graph-based visualization techniques. In these techniques, the out-
put of the orthogonal slicer and generate histogram modules are viewed
as contour and linear plots with the AVS Graph Viewer in its graph view-
er module form.

There are over 100 visualization modules supplied with AVS. The samples
given below show only the most basic network structures applied to the sim-
plest of input datasets. For more examples of visualization networks:

• See the AVS Module Reference Manual. Each module has one or more ex-
ample networks that show how it is used in conjunction with other mod-
ules.

• The Demo suite under the Applications menu presents a selection of
demonstraton scripts. These scripts automatically construct illustrative
networks, then run the networks with a variety of parameter settings.
When the network completes, it stays in the Network Editor where you
can manipulate the modules’ parameter widgets yourself and watch their
effects.

 Mapper Modules: Geometries

Figure 1-11 is a simple network. In this network, the read field module reads
the /usr/avs/data/field/hydrogen.fld dataset into the network.

arbitrary slicer receives this data as input and creates a 2D slice plane
through the 64x64x64 volume of data.

The slice plane would be a featureless gray plane, except that arbitrary slicer
uses the colormap it receives from the generate colormap module to paint the

An Example

INTRODUCTION TO AVS 1-17

numeric values intersected by the 2D slice plane different colors. In the de-
fault colormap, small values map to various shades of blue, mid-range values
to greens, yellows, and oranges; while larger values map to reds. (The reds
and blues appear nearly the same shade of gray in this black and white repre-
sentation.) The color image would show the two circular medium-gray areas
as red, indicating a high probability of an electron occurrence; the peripheral
dark gray areas as blue indicating low probability, while the areas in between
have fine distinctions of intermediate colors indicating intermediate probabil-
ity of an electron.

The mapping between numbers and colors is entirely arbitrary. You control
the mapping with the generate colormap module’s Colormap Editor widget,
as discussed in the "Network Editor" chapter.

arbitrary slicer sends the geometric slice plane to the Geometry Viewer repre-
sented by the geometry viewer module for display and manipulation. This
produces the output window. The user has first used the Geometry Viewer’s
Normalize button to center the slice plane in the view window, then used the
middle mouse button to rotate the slice plane in space.

Compositing Mapping Techniques

Figure 1-13 shows a slightly more complex network. The network is identical
to the previous one, except that two additional geometry mapper modules,
isosurface and volume bounds, have been added in parallel to the existing
arbitrary slicer module. They receive the same hydrogen dataset as input
from read field.

isosurface creates a 3D contour through a volume of data. You supply its lev-
el parameter widget with a numeric value and isosurface produces a geomet-
ric surface that passes through all of the data values in the volume that equal
the level value.

volume bounds is a utility mapper module that simply creates a geometry
object that is a box around the dataset’s limits or extents in space. It shows
where the data ends, how it is shaped, and permits you to orient yourself in
space. hydrogen.fld is a uniform, cubical field, hence the cubical volume
bounds. Curvilinear data produce much more interesting volume bounds.

 Figure 1-11 One-Mapper Geometry Network

An Example

1-18 INTRODUCTION TO AVS

All three of the geometries output by the mappers enter the same geometry
viewer module. Hence, they are composited together into one Geometry
Viewer scene window (Figure 1-14). The isosurface shows vividly the nature
of the distribution of data values throughout the volume of the dataset. One
could have surmised this by moving the arbitrary slicer’s plane around the
volume and piecing together an impression of the "doughnut and spheres"
structure out of its 2D portrayals, but isosurface captures the structure more
graphically.

 Figure 1-12 Arbitrary Slice Plane Viewed with the Geometry Viewer

 Figure 1-13 Three Geometry Mappers Modules in Parallel

An Example

INTRODUCTION TO AVS 1-19

An isosurface is usually opaque. Here the user has used the Geometry View-
er’s transparency controls under its Edit Property button to make the surface
semi-transparent, letting the colors of the arbitrary slicer’s slice plane show
through.

Mapper Modules that Produce Images

We now construct networks using mapper modules that produce 2D images
to represent data rather than geometries. Figure 1-15 shows a simple imaging
techniques network. As with the geometry network, the first module read
field inputs the data to the network.

The orthogonal slicer module also produces a 2D slice through a 3D volume.
It differs from arbitrary slicer above in two regards. First, the slice plane must
be orthogonal to the X, Y, or Z axis instead of arbitrarily placed within the vol-
ume. Second (and more significant) orthogonal slice takes a 3D field volume
of data and outputs another 2D field. arbitrary slicer outputs a geometry
which can have only one destination—the geometry viewer module. By out-
putting another field, orthogonal slicer’s output can be sent to other data fil-

 Figure 1-14 Three Geometry Objects in One View

An Example

1-20 INTRODUCTION TO AVS

tering and mapper modules for further processing. It is a flexible data
subsetting tool.

A close look reveals that orthogonal slicer has no colormap input port as ar-
bitrary slicer has. To gain the same effect, the colorizer module is interposed
to color the data values according to a colormap. colorizer effectively changes
a field of numeric probability data into a field of color values, which orthogo-
nal slicer subsets.

 Figure 1-15 Simple Imaging Technique Network

 Figure 1-16 Orthogonal Slice Seen with the Image Viewer

An Example

INTRODUCTION TO AVS 1-21

The subsequent figure (Figure 1-16) shows the 2D output displayed in the Im-
age Viewer (image viewer module). The orthogonal slice plane is the middle
Z plane of the volume data.

Combining Imaging Techniques

Figure 1-17 shows a more complex image technique network. The new map-
per module is tracer. It produces a ray-traced image rendering of volume
data. By shooting hypothetical parallel rays of light into the volume, then
coming up with a pixel value that represents how much that ray of light
would have been diminished in brightness and changed in color as it passed
through the volume, it creates an image that appears to be a solid, perhaps
hazy and semi-transparent 3D object in space.

To heighten the three-dimensional impression, the user has added the com-
pute gradient/gradient shade modules to the network that pre-process the
hydrogen volume data. These modules calculate how rapidly data is chang-
ing within the field (compute gradient), and create pseudo-shadows to indi-
cate that change (gradient shade). Darker shadows indicate data changing
more rapidly. When these pseudo-shadows are overlaid upon the tracer im-
age, it creates an even more startling impression of a real, solid object.

The euler transformation module is feeding parameter data to both tracer
and gradient shade. This "parameter-as-data" module allows the user to ori-
ent the tracer module’s volume in space; it acts as a kind of "this is where the
camera is" module. gradient shade also gets the transformation so that its
pseudo-shadow overlays are at the same orientation.

Figure 1-18 shows the two images as they appear in the Image Viewer. The
user has used the Image Viewer to scale, position, and label the two images.

 Figure 1-17 Tracing, Gradient Shading and Slicing Combined

An Example

1-22 INTRODUCTION TO AVS

Producing Graphs

Figure 1-19 shows a simple network to produce a graph. read field again
reads the hydrogen atom data. orthogonal slicer appears in order to section
out a 2D slice of the 3D field, which it feeds to the Graph Viewer’s (graph
viewer module) center input port. This port is used to make the Graph View-
er create a contour plot of the data in the 2D slice. The contour plot that re-
sults from this network is shown in the lower left corner of Figure 1-23. The
contour is, again, made from the middle Z plane of the hydrogen data.

 Figure 1-18 Tracer and Orthogonal Slicer Images in the Image Viewer

 Figure 1-19 Simple Network to Produce a Graph

An Example

INTRODUCTION TO AVS 1-23

The next network (Figure 1-20) shows the generate histogram module taking
the hydrogen data and producing a 1D field that represents the distribution of
data within the dataset. It sends this data to a different graph viewer module
to plot as Y values against X values, in bar plot format (Figure 1-21). You
could use generate histogram’s minimum and maximum parameter widgets
settings to plot the distribution of different subsets of the data values, effec-
tively "zooming in" on different data ranges.

 Figure 1-20 Plotting Distribution with Generate Histogram

 Figure 1-21 As a Bar Plot in Graph Viewer

An Example

1-24 INTRODUCTION TO AVS

Techniques Combined

The next two figures (Figure 1-22, Figure 1-23) show a single network per-
forming all of the visualization techniques shown so far. The next figure
shows the single, multi-branched network; and the following figure the dis-
play windows it produces together on the screen. Again, all are representa-
tions of the single 3D field dataset hydrogen.fld.

Curvilinear, Vector Data

AVS also supports curvilinear, floating point vector data as well as the uni-
form scalar byte data represented by hydrogen.fld. Figure 1-24 uses modules
to produce geometric renderings that visualize the /usr/avs/data/field/bluntfin.-
fld dataset. (This is actually two PLOT3D-format datasets in /usr/avs/data/
plot3d read in using an AVS field header.) The magnitude of the vectors (ex-
tract vector/vector mag) are plotted as spheres (bubbleviz/scatter dots)
whose color reflects the size of the vector; stream lines are passed through the
data; and the curvilinear shape of the data is reflected by volume bounds
(Figure 1-25). The color range module is inserted after the generate colormap
module in order to scale the colormap to the narrow data range (floating
point values all near zero), rather than the default 0 to 256 byte value range.

 Figure 1-22 Techniques Combined in a Single Network

Note on Platforms

INTRODUCTION TO AVS 1-25

Note on Platforms

AVS runs on a variety of vendor hardware platforms. Where the platform has
a native graphics subsystem, AVS uses the graphics software library and
hardware rendering capabiities present on the platform to produce its 3D ren-
derings of objects in the Geometry Viewer.

The AVS Geometry Viewer also contains a software renderer. The software ren-
derer implements its own graphics model (lighting, shading, texture map-
ping, clipping planes, etc.) in software, rendering the resulting Geometry
Viewer scenes into an X Window System image file which is then displayed

 Figure 1-23 Image/Geometry/Graph Viewers Display Windows

AVS Documentation

1-26 INTRODUCTION TO AVS

on the screen. Although generally slower than a hardware renderer, the soft-
ware renderer is useful in several circumstances:

• You can use it to run AVS as a remote X Window System client on another
machine in your network. Your own workstation or "X terminal" need
only meet a few minimum requirements. See the "AVS on Color X Serv-
ers" appendix for more information on this feature.

• If the hardware renderer on your platform does not support a particular
rendering feature such as transparency or texture-mapping, you can
switch to the software renderer to obtain the rendering technique.

See the release notes that accompany AVS on your platform for specific infor-
mation on rendering options.

AVS Documentation

The remainder of this AVS User’s Guide discusses:

• Importing Data into AVS and AVS Data Types
• Starting AVS
• Image Viewer Subsystem
• Geometry Viewer Subsystem

 Figure 1-24 Network to Visualize Vectors

AVS Documentation

INTRODUCTION TO AVS 1-27

• Network Editor Subsystem
• Graph Viewer Subsystem
• Advanced Network Editor Techniques

The appendicies cover using AVS from a color "X terminal," and some supple-
mental information on the Geometry Viewer’s data storage script language.

The AVS Module Reference Manual describes each of the 100+ AVS scientific vi-
sualization modules in "man page" format. Each module’s inputs, outputs,
and parameters are listed together with a description of how the module
works and when you would use it. Most show one or more sample networks
that you can construct for yourself with the Network Editor. Each of these
module man pages is also available online through the Network Editor.

The AVS Tutorial Guide gives a step-by-step introduction to using three AVS
subsystems: the Demo suite, the Geometry Viewer, and the Graph Viewer.

 Figure 1-25 Stream Lines/Scatter Dots in the Geometry Viewer

AVS Documentation

1-28 INTRODUCTION TO AVS

The AVS Developer’s Guide describes how to write an AVS module. Its "AVS
Data Types" chapter and various appendicies contain the most detailed de-
scriptions of the actual internal format of AVS data structures, and the pro-
gramming libraries that manipulate them. The Developer’s Guide also
describes the Command Language Interpreter.

The AVS Applications Guide describes how to use three AVS facilities: the
Module Generator, an interface that generates skeletal AVS module code in
C and FORTRAN; the AVS Data Interchange Application (ADIA), a facility
for importing external-format data files into AVS field file format; and the
Data Viewer, a facility for rapidly constructing networks using a pulldown
menu interface.

Interactive help is available, including sample CLI scripts that illustrate net-
work and module use. See the "Using On-line Help" section of the "Starting
AVS" chapter.

IMPORTING DATA INTO AVS 2-1

CHAPTER 2 IMPORTING
DATA
INTO AVS

Introduction

The process of scientific visualization is, in very simple terms, one of trans-
forming data into pictures. AVS contains a comprehensive set of modules for
transforming data and for generating and manipulating 2D images and 3D
geometric scenes. These modules and viewers are discussed in detail in the
remainder of this User’s Guide and in the AVS Module Reference Manual. This
chapter presents various techniques for importing data into AVS.

Unfortunately, scientific data is computed or acquired in a plethora of differ-
ent formats. Perhaps at some point in the future a standard format will be
adopted for representing and storing scientific data, but today, no such stan-
dard exists. In order to use AVS effectively with your data, you will have to
spend some time translating the data into a format that AVS can understand.

This chapter is designed to help you achieve this goal. The first section, "AVS
Data Types," discusses the basic types of data used by AVS, and will guide
you in selecting a data type which closely matches your own data. The next
section, "Data Import Strategies," presents a series of choices available to you
for importing your data into AVS. The last five sections, "Field Data," "Geo-
metric Data," "Unstructured Cell Data," "Colormap Data," and "Molecule Data
Type" present a description of each major AVS data type, AVS modules for
reading these data types, and external file formats for storing AVS-compatible
data sets.

Once you have imported your data into AVS, the power of interactive scientif-
ic visualization will be at your fingertips—allowing you to experience the
same benefits of insight and discovery that thousands of AVS users have ex-
perienced.

AVS Data Types

This section briefly describes each of the basic AVS data types and gives a few
examples of how each data type is used. To help guide you in selecting which
data type is appropriate for your application, a quick reference table is pre-
sented at the end of this section indicating the appropriate data type for vari-
ous scientific and engineering applications.

AVS Data Types

2-2 IMPORTING DATA INTO AVS

AVS has two main types of data: primitive data and aggregate data.

Primitive Data

Primitive data includes simple scalar types (byte, integer, single-precision
floating-point, and double-precision floating point) and text strings. Primitive
data types are the basic building blocks of aggregate data types, and are also
used by AVS to represent parameters.

byte

A single byte, or 8 bits. On all machines, a byte is used to represent an un-
signed integer in the range 0..255.

Bytes are typically used by aggregate data types to represent pixel or voxel in-
tensities. If the intensities are discrete and within the ranges specified above,
byte data significantly reduces the amount of memory required to store a sci-
entific data set when compared to integers or floating-point values.

integer

A single machine word. On 32-bit machine architectures, integers are four
bytes and can be used to represent signed integer values in the range -2**31 to
2**31 (-2147483648..2147483647). On 64-bit architectures, these ranges are
much larger.

Integers are used by aggregate data when discrete values are appropriate, but
greater than the range afforded by bytes (0..255). For example, integers can be
used to represent voxel intensities. Integers can also be used as parameters.
Examples include data replication (zoom=2), downsizing (downsize=4), or an
2D orthogonal slice plane setting within a 3D volume of data (k=21).

single-precision floating point

A single machine word used to represent a floating-point quantity in single
format. On 32-bit machine architectures, single-precision floating point values
are four bytes.

Single-precision floating-point data values are used in aggregate data to rep-
resent continuously varying phenomena, e.g. temperature or velocity. Single-
precision floating-point parameters are used for continuously varying values.
Examples include the diffuse component of a gradient shader, or the x value
of a bilinear interpolator.

double-precision floating point

Two machine words used to represent a floating-point quantity in double for-
mat. On 32-bit machine architectures, double-precision floating point values
are two words, or eight bytes.

AVS Data Types

IMPORTING DATA INTO AVS 2-3

Double-precision floating-point data is used in cases where the accuracy of
single-precision is not great enough to contain the significant components of
the input data values.

text strings

An array of bytes, each of which represents a single character.

Text string parameters are typically used to represent file names. Aggregate
data uses text strings for labels on elements of data; for example, in a multi-
dimensional fluid flow data set, a text string might be used as a label for each
of the vector components: density, x-momentum, y-momentum, etc.

Aggregate Data

Aggregate data is used by AVS to represent the major data types for scientific
and engineering data visualization, including field data, geometric data, un-
structured cell data, and colormap data. AVS has other aggregate data types,
including pixel maps, and user-defined data. These two data types are gener-
ally not required by a novice or intermediate-level AVS user to import data
into AVS, and are therefore not described in this chapter. For a full description
of AVS data types, consult the AVS Developer’s Guide.

Field Data

Field data is an n-dimensional array with an m-dimensional vector of values
at each array location (where n and m are any integers). The physical location
of each data element (if it exists) is either implied or specified explicitly with
3D coordinates.

Field data is typically used to represent two-dimensional images (e.g. satellite
images or x-rays) and three-dimensional volumes (e.g. MRI scans, CAT scans,
numerical simulation data, fluid flow data). It can also be used to represent
one-dimensional data (e.g. x-y plots, or a series of points in space).

Geometric Data

Geometric data consists of three-dimensional objects that are constructed out
of one or more of the following primitives: polyhedra, polygons, meshes,
spheres, and polytriangles.

Geometric data is used to represent any three-dimensional shape, including
real-world objects (e.g. rotor blades in jet turbines, a brake assembly in an au-
tomobile, or a film advance mechanism in a camera), objects represented as
geometries (e.g. ball and stick models of molecules), and objects created by vi-
sualization techniques (e.g. an arbitrary slice plane through a volume, or an
isosurface).

AVS Data Types

2-4 IMPORTING DATA INTO AVS

Unstructured Cell Data

Unstructured cell data (UCD) consists of a geometric model built of individu-
al cells. The cells, including 1D, 2D, and 3D shapes, are defined by nodes, or
vertices. Data, either scalar or vector, can be assigned to the entire model, each
individual cell, and each vertex of each cell.

Unstructured cell data is used in finite element problems, including structural
analysis and certain areas of computational fluid dynamics.

Molecule Data Type

The molecule data type (MDT) consists of ten defined CHEM objects that can
be combined hierarchically in linked lists to represent the structure of mole-
cules. At the root of the hierarchy is the CHEMmolecule. A CHEMmolecule
is a data structure containing the molecule’s name, and a unit in angstroms of
bohrs. Chained off of the CHEMmolecule is an arbitrarily long list of CHE-
Matoms (data for component atoms), CHEMchemunits (data for defining
molecule substructures), CHEMquantums (data for classical quantum chem-
istry), and user-defined data.

The molecule data type can be used to model chemical data for problems in
classical, substructure, and quantum chemistry.

The molecule data type and the libchem library that manipulates it is de-
scribed fully in its own document, the AVS Chemistry Developer’s Guide. It is
discussed only briefly in this User’s Guide.

Colormap Data

A colormap is an arbitrary-sized one-dimensional array of 4D vectors. Vector
components include normalized floating-point values for hue, saturation,
brightness, and opacity.

Colormaps are used to specify colors of data values that are displayed on the
screen. For example, an image composed of 8-bit pixels can be pseudo-col-
ored by a colormap that ranges continuously in hue from blue to red. A pixel
intensity of 0 is colored blue when it is displayed and a pixel intensity of 255
is colored red. All intermediate pixel intensities are colored with a hue that is
in the color spectrum between blue and red.

AVS Data Type Reference Table

The following table presents a few common scientific applications and the
AVS data types frequently used to represent various types of data. If you do

Data Import Strategies

IMPORTING DATA INTO AVS 2-5

not find your application in this table, try to locate one that has similar char-
acteristics.

Data Import Strategies

There are basically two choices a user has when importing data into AVS: (1)
use an existing AVS module, or (2) write a customized new module.

You must first determine if an existing AVS module can satisfy your data in-
put requirements. To do so, you must understand each of the AVS data types,
the existing modules for reading AVS data, and the format of external AVS-
compatible data. The following sections of this chapter will allow you to
make this assessment.

Table 2-1. AVS Data Type/Application Cross Reference Table

Application AVS Data Examples

CFD field

ucd
geometry

Simulation grids
Finite difference data
Finite element model and data
Structures

MCAE ucd
geometry
field

Finite element model and data
Structures
Finite difference data

Molecular Chemistry molecule data type
geometry
field

Ball and Stick models
Microscopic and x-ray imaging
Scatter data

Quantum Chemistry molecule data type
field

Molecular orbitals
Molecular interactions
Subatommic particles

Seismic field

geometry

3D volumes - sampled data
3D volumes - simulated data
Structures

Strategic Imaging field

geometry

2D images
Digital terrain maps
Multispectral images
Structures

Medical Imaging field

geometry

2D images - CAT/MRI/PET scans
x-rays
3D volumes - CAT/MRI/PET scans
Anatomical structures

Meteorology field 2D images
3D volumes - sampled data
3D volumes - simulated data

Data Import Strategies

2-6 IMPORTING DATA INTO AVS

As will be shown, many "data importing" modules are provided with AVS.
These modules may be already-compiled utilities, or they may exist as source
code examples that you can compile.

It is possible that you will be unable to find a module suited to your data for-
mat. However, it is likely that one exists elsewhere. Contact your sales office
to see if a "user-contributed" module exists for your data format—many users
of AVS could have data similar to your own and might already have created a
module to import it.

If an existing AVS module is not available for importing your data, you will
have to write a new module, tailored to match your specific data format. One
of the primary goals of AVS is to minimize the amount of programming nec-
essary if, and when, a new module must be developed.

Once it has been determined that programming is necessary, several options
are available:

1. Write a shell-level "translator" that converts your data format into
the appropriate AVS data format.

2. Modify your application to produce data in AVS format.
3. Write an AVS module that converts your data format into the ap-

propriate AVS data format.
4. Modify your application as an AVS module that can be incorporat-

ed into AVS networks.

If programming is required, the most effective use of AVS will generally in-
volve writing a module. Once written, the module can become part of many
different visualization networks, and can easily be modified and enhanced to
satisfy additional requirements. AVS has example module source programs in
Fortran and C for each of its internal data formats, located in the /usr/avs/ex-
amples directory. You can use these samples as a guide to writing your own
modules.

There are many additional benefits to incorporating a data-producing appli-
cation into an AVS module. Once an application has been transformed into an
AVS module, the user can gain interactive control over various parameters
(e.g. starting conditions, boundary conditions, constraints). In effect, the pro-
cess of visualization can be tightly integrated with the simulation or data ac-
quisition process.

The remainder of this chapter is devoted to helping you determine if there is
an existing solution to the problem of importing your data into AVS. The em-
phasis here is on the "no-programming required" approach. However, point-
ers are given to existing sample source for data importing modules. It is
strongly suggested that the user consult the AVS Developer’s Guide before pro-
gramming AVS modules.

Field Data

IMPORTING DATA INTO AVS 2-7

Field Data

A field is a generalization of the familiar array structure. Whereas each ele-
ment of an array has a single data value (e.g. byte or integer), each element of
an AVS field can have a list of data values. Thus, a field can be described as an
n-dimensional array with an m-dimensional vector of values at each array lo-
cation (where n and m are any integers). Moreover, the field can include coor-
dinate data, so that each field element is mapped to a real-world location.

The AVS field datatype has the following components:

ndim
The number of computational dimensions in the field. For an image,
ndim = 2. For a volume, ndim = 3.

dim1
dim2
dim3
...

The dimension size of each axis (the array bound for each dimension of
the computational array). The number of dimx entries is based on the val-
ue of ndim.

nspace
The dimensionality of the physical space that corresponds to the compu-
tational space (number of physical coordinates per field element).

veclen
The number of data values for each field element. All the data values
must be of the same primitive type (e.g. integer), so that the collection of
values is conceptually a veclen-dimensional vector. If veclen=1, the sin-
gle data value is, effectively, a scalar. Thus, the term scalar field is often
used to describe such a field.

data_type
The primitive data type of all the data values: must be one of byte, inte-
ger, single, or double.

field_type
The field type, one of uniform, rectilinear, or irregular.

min_ext and max_ext
The minimum and maximum coordinate value that any member data
point occupies in space, for each axis in the data.

min_data and max_data
The minimum and maximum data value in the field.

labels
A title for each of the individual elements in a vector of values.

Field Data

2-8 IMPORTING DATA INTO AVS

units
A string that describes the unit of measurement for each vector element.

field_data
The data values for the field.

coordinate_data
The computational-to-physical space mapping coordinate data values.

Other references to the AVS field format can be found in the read field page of
the AVS Module Reference Manual, and in the "AVS Data Types" chapter of the
AVS Developer’s Guide.

AVS field data is classified into three basic categories, according to the specifi-
cation of computational-to-physical space mapping. As mentioned above, the
three types of fields are uniform, rectilinear, and irregular.

Uniform Fields

A uniform field has no computational-to-physical space mapping between
data elements. The field implicitly takes its mapping from the organization of
the computational array of field elements. However, AVS allows an entire
uniform field to be mapped into physical space by specifying physical coordi-
nates for the bounds of the field dataset. Example

Consider the following 2D integer-valued array (using a FORTRAN-style no-
tation):

DATA(I, J) I=1,2 J=1,5

DATA(1,1) = 12
DATA(2,1) = 17

DATA(1,2) = 4
DATA(2,2) = 0

DATA(1,3) = 10
DATA(2,3) = -5

DATA(1,4) = 16
DATA(2,4) = 16

DATA(1,5) = 16
DATA(2,5) = 8

This array describes a 2D computational space, with I and J dimensions. The
size of the I dimension is 2; the size of the J dimension is 5. The data is of type
integer.

Field Data

IMPORTING DATA INTO AVS 2-9

Since there is only one data value for each field element, this is said to be a
scalar field. The following notation might be used to indicate the values of a
vector field:

DATA(2,3) = (2.51, 1.09, 5.73)

The field is still 2-dimensional, but the data value is said to be a 3-vector. Such
a data value might be used to represent a velocity vector, or to represent a
temperature-pressure-humidity measurement at each location in space.

In the absence of any additional information, there is a natural mapping be-
tween the computational space and a 2D physical space, the X-Y coordinate
plane (see Figure 2-1.) .

The physical space is a uniformly-spaced lattice. Accordingly, a field with no
coordinate data for each of the data values is said to have the field type uni-
form.

Rectilinear Fields

In a rectilinear field data set, each array index in each dimension of the com-
putational space is mapped to a physical coordinate. This produces a physical

X-axis

Y-axis

I

J

 Figure 2-1 Uniform 2D Field

Field Data

2-10 IMPORTING DATA INTO AVS

space whose axes are orthogonal, but the spacing among the elements is not
necessarily equal. Example

An explicit mapping between the computational and physical spaces can be
established by specifying coordinate data for all of the points along each axis:

X-coordinates: 0, 3, 6, 9, 12
Y-coordinates: 20*log(1), 20*log(2), 20*log(3), 20*log(4), 20*log(5)

From the preceding example, array element DATA(1,3) would be mapped to
physical location (0, 20*log(3)) according to this scheme. This mapping from
computational space to the X-Y plane can be pictured as in Figure 2-2.

Note that in a rectilinear field, lines connecting the lattice points are always
mutually orthogonal—all the angles are right angles.

Irregular Fields

For irregular fields, there is no restriction on the correspondence between
computational space and physical space. Each element in the computational
space is assigned its own physical coordinates. Example

Y-axis

X-axis

J

I

 Figure 2-2 Rectilinear 2D Field

Field Data

IMPORTING DATA INTO AVS 2-11

The first example is extended once again, this time to include a coordinate
pair for each of the data elements:

DATA(1,1) -> (1.0, 1.0)
DATA(2,1) -> (7.0, 1.0)

DATA(1,2) -> (3.0, 3.0)
DATA(2,2) -> (6.0, 2.5)

DATA(1,3) -> (4.0, 4.5)
DATA(2,3) -> (5.5, 4.5)

DATA(1,4) -> (3.5, 6.0)
DATA(2,4) -> (4.5, 5.5)

DATA(1,5) -> (3.5, 7.5)
DATA(2,5) -> (6.0, 8.0)

This mapping from computational space to the X-Y plane can be pictured as
in Figure 2-3.

Note that there is nothing in this scheme that restricts the physical space to
having the same number of dimensions as the computational space. For ex-
ample, the field element DATA(2,3) could be mapped to the physical point
(4.5, 5.5, -8.1) in 3D space. This kind of mapping can be used to "wrap" a plane

X-axis

Y-axis

I

 Figure 2-3 Irregular or Curvilinear 2D Field

Field Data

2-12 IMPORTING DATA INTO AVS

(computational space) around a sphere (physical space), or to warp a flat
plane into a 3D manifold.

For additional examples, see the "AVS Data Types" chapter in the AVS Devel-
oper’s Guide.

AVS Data Interchange Application: ADIA

The AVS Data Interchange Application (ADIA) is an interactive tool for im-
porting a wide variety of binary and ASCII data formats into an AVS field.
ADIA is similar in functionality to the read field module described below,
with these additional features:

• It can read 16-bit "halfword" data. Many medical imaging applications
produce 12-bit data in two 8-byte halfwords. (The data will be represent-
ed in the AVS field as 32-bit integers.)

• It supports variables and expressions, making it possible to define skips
and spaces necessary to read the input data as a function, rather than as
an absolute number.

• It is an interactive facility contained within AVS—one does not need to
use a text editor to externally edit an ASCII header.

• It can read data format information, such as the dimensions of a dataset,
from the input dataset and use these values as part of its variables and ex-
pressions.

• It creates ASCII data forms that define how to read a particular input
dataset format. These data forms can be reused and exchanged.

ADIA is not documented in this manual. Instead, it is fully described in the
AVS Applications Guide manual.

AVS Module: read field

The read field module has two input modes, "native field input" and "data-
parsing input". In its first input mode, it reads an AVS field data structure
from a disk file into a network. The format of an AVS field file is discussed be-
low in the section "AVS Field File Format".

In its second input mode, it converts data stored in ASCII, FORTRAN unfor-
matted, or pure binary data files into AVS field format. read field can thus be
used to import many datasets into AVS.

Native Field Input

read field can read files in the native AVS field file format into an AVS net-
work. An AVS field file (suffix .fld) has the following components:

• An ASCII header that describes the field

Field Data

IMPORTING DATA INTO AVS 2-13

• Two separator characters that divide the ASCII header from the data and
coordinate information

• A binary area containing the data and coordinate information

The write field module creates files in this format.

ASCII Header

The ASCII header contains a series of text lines, each of which is either a com-
ment or a TOKEN=VALUE pair. For example, the following header defines a
field of type "field 2D 4-vector byte", which is the AVS image format:

AVS field file
#
ndim=2 # number of computational dimensions
dim1=512
dim2=480
nspace=2 # number of physical dimensions
veclen=4
data=byte
field=uniform

The first two lines are comments, indicated by the # character. Note that the
first line of the header must begin as follows:

AVS

In this example, comments also occur at the end of the 3rd and 6th lines. Any
characters following (and including) # in a header line are ignored. Com-
ments are not required.

Separator Characters

The ASCII header must be followed by two formfeed characters (i.e. Ctrl-L,
octal 14, decimal 12, hex 0C), in order to separate it from the binary area. This
scheme allows you use the more(1) shell command to examine the header.
When more stops at the formfeeds, press q to quit. This avoids the problem of
the binary data garbling the screen.

Binary Area

The binary area contains both data values and coordinate mapping data. This
section describes the components of the binary are by looking at how the size
of this area is calculated.

The size of the data values section of the binary area is calculated by taking
the product of:

• All the dimensions of the field: (dim1 * dim2 * ... dimx),
• The number of data values per field element: (veclen), and
• The byte size of the primitive data type: (data_size).

Field Data

2-14 IMPORTING DATA INTO AVS

Thus, the size (in bytes) of the data values section is:

(dim1 * dim2 * ... dimx * veclen * data_size)

In the block of data values:

• All the data values for a field element are stored together.
• The first array index varies most quickly (FORTRAN-style).

The size of the coordinate mapping data section of the binary area depends
on the field type: uniform, rectilinear, or irregular.

• For uniform fields, coordinate mapping data contains two values for each
physical dimension (n-space) of the data, one associated with the mini-
mum extent of the data, and the other associated with the maximum ex-
tent.
The minimum and maximum extent values in the coordinate binary area
are copies of the min_ext and max_ext values in the field data structure,
except when the field has been cropped, downsized, or interpolated. Then
the field data structure contains the original field’s min_ext and max_ext
values, while the coordinate section of the binary area contains the mini-
mum and maximum extent of the subsetted data. Mapper modules can
use this additional extent information to properly locate their geometric
representation of the subsetted data in world coordinate space. The ex-
tents in the coordinate binary area are stored in this order: minimum x,
maximum x, minimum y, maximum y, minimum z...etc.
The size of the coordinate mapping data section for a uniform field is sim-
ply:

(2 * nspace) * sizeof(float)
NOTE: sizeof(float) refers to the size, in bytes, of a single-precision float-
ing-point number. On 32-bit architectures, this will be 4.

• For rectilinear fields, there is one coordinate for each array index in each
dimension of computational space. Thus, the size of the coordinates area
is:

(dim1 + dim2 ... + dimx) * sizeof(float)

All of the X-coordinates are stored together, at the beginning of the coor-
dinates area. Following these are all the Y-coordinates, and so on.

• For irregular fields, each field element is mapped to a point in nspace-di-
mensional physical space. Thus, the size of the coordinates area is:

(dim1 * dim2 ... * dimx) * nspace * sizeof(float)

As with rectilinear fields, all of the X-coordinates are stored together, at
the beginning of the coordinates area. Following these are all the Y-coor-
dinates, and so on.

Example 1

The following ASCII header describes a volume (3D uniform field) with a sin-
gle byte of data for each field element. This format might be used to represent
CAT scan data, where all of the 2D slices are equally spaced:

Field Data

IMPORTING DATA INTO AVS 2-15

AVS field file
ndim=3 # number of dimensions in the field
dim1=64 # dimension of axis 1
dim2=64 # dimension of axis 2
dim3=64 # dimension of axis 3
nspace=3 # number of physical coordinates per point
veclen=1 # number of components at each point
data=byte # data type (byte, integer, float, double)
field=uniform # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:

(64 * 64 * 64) * 1 * 1 = 262,144 bytes

The coordinates area occupies (2 * 4) * 3 bytes. The total binary area occupies
262,168 bytes.

Example 2

The following ASCII header describes a volume (3D uniform field) whose
data for each field element is a 3D vector of single-precision values. This for-
mat might be used to represent a volume of data from a sampling device
where the samples are not equally spaced.

AVS field file
ndim=3 # number of dimensions in the field
dim1=27 # dimension of axis 1
dim2=25 # dimension of axis 2
dim3=32 # dimension of axis 3
nspace=3 # number of physical coordinates per point
veclen=3 # number of components at each point
data=float # data type (byte, integer, float, double)
field=uniform # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:

(27 * 25 * 32) * 4 * 3 = 259,200 bytes

The coordinates area occupies (2 * 4) * 3 bytes. The total binary area occupies
259,224 bytes.

Example 3

The following ASCII header describes an irregular volume (3D irregular field)
with one single-precision value for each field element. The binary area in-
cludes an (X,Y,Z) coordinate triple for each field element, indicating the corre-
sponding point in physical space. This format might be used to represent
velocity data from a simulation of fluid flow around a curved object (e.g. an
airplane wing). Note that the data type is specified as xdr_float. This means
that the data file is written in Sun’s external data representation (XDR) for-
mat. This allows for transporation of field files between machines of dissimi-
lation data storage architectures ("big-endian" vs "little-endian"). When using
read field, if Auto is selected on the control panel, read field will look at the
data specification. If it is simply float, (or integer, or double), it will assume

Field Data

2-16 IMPORTING DATA INTO AVS

the file is written in the system’s native format. If it is xdr_integer, xdr_float,
or xdr_double it will translate the XDR format into its native format. If Porta-
ble is selected rather than Auto, it will always assume the file is written in
XDR format.

AVS field file
ndim=3 # number of dimensions in the field
dim1=40 # dimension of axis 1
dim2=32 # dimension of axis 2
dim3=32 # dimension of axis 3
nspace=3 # number of physical coordinates per point
veclen=1 # number of components at each point
data=xdr_float # data type (byte, integer, float, double)
field=irregular # field type (uniform, rectilinear, irregular)

In the binary area, the data area occupies this amount of space:

(40 * 32 * 32) * 4 * 1 = 163,840 bytes

The coordinates area occupies this amount of space:

(40 * 32 * 32) * 4 * 3 = 491,520 bytes

Data-Parsing Input

In its second input mode, read field can convert a certain class of data stored
in ASCII, FORTRAN unformatted, or pure binary data files into AVS field for-
mat. To import data into AVS, you must create an ASCII description file that
defines the structure of the AVS field to make. The first part of this description
file is identical in format and meaning to the ASCII header file described
above.

The second part of this file contains commands that specify which files con-
tain the data or coordinate information, its data type (ASCII, FORTRAN un-
formatted, or binary), and simple parsing instructions. read field can read a
file that is parseable by this general scheme:

skip n lines or bytes
move over an offset of m columns on this line (ASCII only)
read the value
do until # of values needed
 {
 take p stride(s) to the next value
 read the value
 }

Note that read field follows parsing instructions you supply; it does not "fig-
ure out" the format of a data file.

The ASCII description file, data, and coordinate information for rectilinear
and irregular data can all be read from different files. If the resulting AVS field
contains a vector of data values at each point, each vector element can also be
read from a separate file.

Field Data

IMPORTING DATA INTO AVS 2-17

The ASCII description file must have a .fld file suffix or the read field file
browser will not display the file.

read field data parsing capability is meant to be used only once, in order to
convert data to AVS field format. The parsing activity makes read field run
more slowly than when it reads a file that is already in AVS field format. Once
you have read your data using read field’s data-parsing mode, you should
use the write field module to store it permanently on disk in AVS field file for-
mat.

ASCII Description File

As the example below shows, the ASCII description file contains a series of
text lines that define the AVS field to construct. Each line is either:

• A comment
• A required line in the form token=value

• An optional line in the form token=value

• A variable or coord parsing specification

The following ASCII description file imports three-dimensional curvilinear
data with a vector of values at each point into an AVS field of type "field 3D 3-
vector irregular float". This type of data often occurs in computational fluid
dynamics applications. The data and coordinate information are in separate
files, both of which were written as straight binary data. Both files happen to
have a serial organization. In the data file, all of vector element 1’s values ap-
pear, then all of vector element 2’s, then all of vector element 3’s values. In the
X, Y, Z coordinate file, all the X coordinate values appear, then all the Y’s, then
all the Z’s.

Each line’s meaning is explained in detail below.

AVS field file the string "# AVS" must be the first five
characters in the file.
#
When a ’#’ character appears in a line,
the rest of the line is a comment
#
ndim=3 # REQUIRED - the number of dimensions
dim1=40 # REQUIRED - dimension of axis 1
dim2=32 # REQUIRED - dimension of axis 2
dim3=32 # REQUIRED - dimension of axis 3
nspace=3 # REQUIRED - coordinates per point
veclen=3 # REQUIRED - components at each point
data=float # REQUIRED - data type
field=irregular # REQUIRED - field type
min_ext=-1.0 -1.0 -1.0 # OPTIONAL - coordinate space extent
max_ext=1.0 1.0 1.0 # OPTIONAL - coordinate space extent
label=x-velocity # OPTIONAL - label for variable 1
label=y-velocity # OPTIONAL - label for variable 2
label=z-velocity # OPTIONAL - label for variable 3
unit=miles-per-second # OPTIONAL - unit label for variable 1
unit=miles-per-second # OPTIONAL - unit label for variable 2

Field Data

2-18 IMPORTING DATA INTO AVS

unit=miles-per-second # OPTIONAL - unit label for variable 3
min_val=-2.1 -0.3 -3.7 # OPTIONAL - minimum data values
max_val=5.79 3.54 1.50 # OPTIONAL - maximum data values
#
For each coordinate X, Y, and Z: data reading instructions
#
coord 1 file=/jetdata/wing.bin filetype=binary skip=12
coord 2 file=/jetdata/wing.bin filetype=binary skip=163852
coord 3 file=/jetdata/wing.bin filetype=binary skip=327692
#
For each value in the vector: data reading instructions
#
variable 1 file=/jetdata/wdata.bin filetype=binary skip=28
variable 2 file=/jetdata/wdata.bin filetype=binary skip=163868
variable 3 file=/jetdata/wdata.bin filetype=binary skip=327708

Any characters following (and including) # in a header line are ignored.

NOTE: The first five characters in the ASCII description file must be "# AVS"
or read field will not recognize the file as valid.

The example above shows all of the required TOKEN=VALUE token names:
an ASCII description file that is missing one or more of these lines causes read
field to generate an error. Required TOKEN=VALUE pairs are stored in the
AVS field that read field produces as output.

Optional TOKEN=VALUE pairs are stored in the output AVS field as well, if
they are provided. min_ext and max_ext are stored in the output AVS field
even if they are not specified, as read field calculates them if they are not pro-
vided.

The variable and coord lines are not stored in the output AVS field. They are
only instructions to read field.

With the exception of filenames, ASCII description file specifications are not
case-sensitive. You can surround the = character with any amount of white
space (including none at all). For example, "dim2 = 32", "DIM 2 =32", and
"Dim2=32" are all equivalent.

Below is a complete description of all of the tokens recognized by the read
field parser:

ndim = value (required)
The number of computational dimensions in the field. For an image,
ndim = 2. For a volume, ndim = 3.

dim1 = value (required)
dim2 = value (required, depending on total number of dimensions)
dim3 = value (required, depending on total number of dimensions)
...

The dimension size of each axis (the array bound for each dimension of
the computational array). The number of dimx entries must match the
value of ndim. For instance, if you specify a 3D computational space field

Field Data

IMPORTING DATA INTO AVS 2-19

(ndim=3), you must specify the length of the X dimension (dim1), the
length of the Y dimension (dim2), and the length of the Z dimension
(dim3). Note that counting is 1-based, not 0-based. If you have scatter
data (ndim=1) in 3D coordinate space (nspace=3), there will be only
dim1=value.

nspace = value (required)
The dimensionality of the physical space that corresponds to the compu-
tational space (number of physical coordinates per field element).

In many cases, the values of nspace and ndim are the same — the physi-
cal and computational spaces have the same dimensionality. But you
might embed a 2D computational field in 3D physical space to define a
manifold; or you might embed a 1D computational field in 3D physical
space to define an arbitrary set of points (a "scatter").

veclen = value (required)
The number of data values for each field element. All the data values
must be of the same primitive type (e.g. integer), so that the collection of
values is conceptually a veclen-dimensional vector. If veclen=1, the sin-
gle data value is, effectively, a scalar. Thus, the term scalar field is often
used to describe such a field.

data = byte (one of the four options is required)
data = integer
data = float
data = double

The primitive data type of all the data values. xdr_integer, sdr_float, and
xdr_double may also be specified. If Auto is selected on input, read_-
field will examine the data= field. If the specification is unqualified, it as-
sumes the file is written in the native format for the platform ("big-
endian" vs "little-endian"). If it is xdr_value, it will read it as Sun’s exter-
nal data format (XDR) and translate it into the native format. If Portable
is selected, it assumes XDR format no matter what is placed here.

field = uniform (one of the three options is required)
field = rectilinear
field = irregular

The field type. A uniform field has no computational-to-physical space
mapping. The field implicitly takes its mapping from the organization of
the computational array of field elements.

For a rectilinear field, each array index in each dimension of the compu-
tational space is mapped to a physical coordinate. This produces a physi-
cal space whose axes are orthogonal, but the spacing among elements is
not necessarily equal.

For an irregular field, there is no restriction on the correspondence be-
tween computational space and physical space. Each element in the com-
putational space is assigned its own physical coordinates.

Field Data

2-20 IMPORTING DATA INTO AVS

min_ext = x-value [y-value] [z-value]... (optional)
max_ext = x-value [y-value] [z-value]... (optional)

The minimum and maximum coordinate value that any member data
point occupies in space, for each axis in the data. If you do not supply this
value, read field calculates it and stores it in the output AVS field data
structure. This value can be used by modules downstream to, for exam-
ple, size the volume bounds drawn around the data in the Geometry
Viewer or put minimum and maximum values on coordinate parameter
manipulator dials (probe). Values can be separated by blanks and/or
commas.

If you do not know the extents, don’t guess—let read field calculate them.
Most downstream modules use whatever values are supplied, without
checking their validity. If the wrong numbers are specified, incorrect re-
sults will be computed.

label = string1 [string2] [string3]... (optional)
Allows you to title the individual elements in a vector of values. These la-
bels are stored in the output AVS field data structure. Subsequent mod-
ules that work on the individual vector elements (for example, extract
scalar) will label their parameter widgets with the strings provided here
instead of the default "Channel 0, Channel 1...", etc. You can either use one
label line as shown here, or separate label lines as shown in the example
above. In either case, the labels are applied to the elements of the vector in
the order encountered. You can also label single scalar values, though
downstream modules may ignore such a label. Any alphanumeric string
is acceptable. Strings can be separated by blanks and/or commas.

unit = string1 [string2] [string3]... (optional)
Allows you to specify a string that describes the unit of measurement for
each vector element. You can either use one unit line as shown here, or
separate unit lines as shown in the example above. In either case, the unit
specifications are applied to the elements of the vector in the order en-
countered. You can also specify the unit for a single scalar value, though
downstream modules may ignore it. Any alphanumeric string is accept-
able. Strings can be separated by blanks and/or commas.

min_val = value [value] [value]... (optional)
max_val = value [value] [value]... (optional)

For each data element in a scalar or vector field, allows you to specify the
minimum and maximum data values. These values are stored in the out-
put AVS field data structure. This is used by subsequent modules that
need to normalize the data. Values can be separated by blanks and/or
commas.

read field does not calculate these values if you do not supply them (un-
like min_ext and max_ext). If you do not know these values, don’t
guess—just leave these optional lines out. In this case, the write field
module can, at your instruction, compute these values when it creates an
AVS field file. Most downstream modules use whatever values are sup-
plied, without checking their validity. If the wrong numbers are specified,
incorrect results will be computed.

Field Data

IMPORTING DATA INTO AVS 2-21

variable n file=filespec filetype=type skip=n offset=m stride=p
coord n file=filespec filetype=type skip=n offset=m stride=p

Both of these specifications must be on a single line. There is no support
for continuation characters.

variable specifies where to find data information, its type, and how to
read it.

coord specifies where to find coordinate information, its type, and how to
read it. It is used when the data is rectilinear or irregular.

The individual parameters are interpreted as follows:

• n — An integer value that specifies which element of a data vector or
which coordinate (1 for x, 2 for y, 3 for z, etc.) the subsequent read in-
structions apply to. n does not default to 1 and must be specified.

• file = filespec — The name of the file containing the data or coordi-
nates. The filespec can be an absolute full pathname to a file, or it can
be a filespec relative to the directory that contains the field ASCII
header. For example, an absolute pathname might be /home/myuserid/
experiment/data. In a relative pathname specification, if the ASCII file
of field parsing instructions exists in the file /home/myuserid/experi-
ment/readit.fld and the data and coordinates file are in the subdirecto-
ry /home/myuserid/experiment/data, you can name these files as xdata/
xyzs and data/values. The advantage of this second approach is that
you can move the directories containing your data around without
having to change the contents of the ASCII parsing instruction file.

• filetype = ascii — ascii means that the data or coordinate information
is in an ASCII file. In ASCII files, float data can be specified in either
real (0.1) or scientific notation (1.00000e-01) format interchangeably.

• filetype = unformatted — the file is written in FORTRAN unformat-
ted format. (FORTRAN unformatted data is binary data with addi-
tional words written at the beginning and end of each data block
stating the number of bytes or words in the data block.) In general,
read field can read unformatted files where all variables of one type
(for example, all the X coordinates) were output as one "record" in a
single write statement. This is usually the case.

• filetype = binary — the file is written in straight binary format, such
as that produced by Unix output routines, write and fwrite.
Note the warning on binary compatibility among different hardware
platforms on the read field man page.
In each case, read field will use the data type specified in the earlier
data={byte,float,integer,double} statement when it interprets the file.

• skip = n — For ascii files, skip specifies the number of lines to skip
over before starting to read the data. Lines are demarked by newline
characters.
For binary or unformatted files, skip specifies the number of bytes to
skip over before starting to read the data.
There are two motivations for skip. First, data files often include
header information irrelevant to the AVS field data type. Second, if
the file contains, for example, all X data values, then all Y data values,

Field Data

2-22 IMPORTING DATA INTO AVS

skip provides a way to space across the irrelevant data to the correct
starting point.
skip can only be used once at the start of the file. There is no way to
skip, read, stride, then skip again.
You must simply know what value to use for skip based on your
knowledge of the software that produced the original data file, the
number of data elements, and the type (byte, float, double, integer,
etc.)
skip defaults to 0.

• offset = m — offset is only relevant to ASCII files; it is ignored for bi-
nary and unformatted files. offset specifies the number of columns to
space over before starting to read the first datum. (The stride specifi-
cation determines how subsequent data are read.) Hence, to read the
fourth column of numbers in an ASCII file, use offset=3.
In ASCII files, columns must be separated by one or more blank char-
acters. Commas, semicolons, TAB characters, etc., are not recognized
as delimiters. If necessary, edit ASCII files to meet this restriction.
offset defaults to 0 (the first column, no columns spaced over).

• stride = p — stride assumes you are "standing on" the data value just
read. stride specifies how many "strides" must be taken to get to the
next data value. In ASCII files, stride means stride forward p delimit-
ed items. In binary and unformatted files, stride means stride for-
ward p * the size of the data type (byte, float, double, integer). In a file
where the data or coordinate values are sequential, one after the oth-
er, the stride would be 1. Note that this presumes homogeneous data
in binary and unformatted files — double-precision values could not
be intermixed with single precision values.
stride defaults to 1.
The stride value will be repeatedly used until the number of data
items indicated by the product of the dimensions (e.g. dim1 * dim2 *
dim3) have been read.

Example 1

Here are some skip, offset, and stride examples for ASCII data. "A’s" are vec-
tor component 1; "B’s" are vector component 2.

ASCII file organization 1:

X Y Z A B
1 1 1 A1 B1
2 2 2 A2 B2
3 3 3 A3 B3
4 4 4 A4 B4
5 5 5 A5 B5

To read A: skip=1, offset=3, stride=5 To read B: skip=1, offset=4, stride=5

ASCII file organization 2:

Field Data

IMPORTING DATA INTO AVS 2-23

A1 A2 A3 A4 A5
A6 A7 A8 A9 A10
A11 A12 A13 A14 A15
B1 B2 B3 B4 B5
B6 B7 B8 B9 B10
B11 B12 B13 B14 B15

To read A: skip=0, offset=0, stride=1 To read B: skip=3, offset=0, stride=1

ASCII file organization 3:

A1 B1 A2 B2 A3 B3
A4 B4 A5 B5 A6 B6
A7 B7 A8 B8 A9 B9
A10 B10 A11 B11 A12 B12

To read A: skip=0, offset=0, stride=2 To read B: skip=0, offset=1, stride=2

ASCII file organization 4:

TEMP1=A1 TEMP2=A2 TEMP3=A3 TEMP4=A4
TEMP5=A5 TEMP6=A6 TEMP7=A7 TEMP8=A8
PRESS=B1 PRESS=B2 PRESS=B3 PRESS=B4
PRESS=B5 PRESS=B6 PRESS=B7 PRESS=B8

read field cannot read this file until the data labels and equal signs are edited
out.

Example 2

You have some 3-dimensional, curvilinear data that projects the amount and
location of wood that will be eaten after five years by a colony of termites that
has entered a 14th century Scandanavian grain silo structure at a particular
spot in its base. The data is in one ASCII file, decay.dat, as a long sequential,
numbered list of 1250 consumed-wood values that looks like this:

1,1002.707;
2,1443.971;
3,1307.069;
4,1240.354;
5,1778.715;
 ...

The coordinates that correspond to the data values are in a separate ASCII
file, loc.dat, that looks like this:

LOC,1,0,0.2500000,0.0000000e+00,1.105255,0.0000000e+00;
LOC,2,0,0.2500000,0.0000000e+00,1.000000,0.0000000e+00;
LOC,3,0,0.5000000,0.0000000e+00,1.552552,0.0000000e+00;
LOC,4,0,0.5000000,0.0000000e+00,1.442042,0.0000000e+00;
LOC,5,0,0.5000000,0.0000000e+00,1.331531,0.0000000e+00;
 ...

In the data file, the second column represents the data. In the coordinate file,
the fourth through sixth columns are the x, y, and z coordinates, respectively.

Field Data

2-24 IMPORTING DATA INTO AVS

First, to read this data, you must use a text editor to globally edit out the com-
mas and semi-colons, changing them to spaces. The files now look like:

1 1002.707
2 1443.971
 ...

LOC 1 0 0.2500000 0.0000000e+00 1.105255 0.0000000e+00
LOC 2 0 0.2500000 0.0000000e+00 1.000000 0.0000000e+00
 ...

The following ASCII description file, decay.fld, would import the data into
AVS field format:

AVS Field File
#
Termite Decay after Five Years
#
ndim=3 # number of dimensions in the field
dim1=25 # dimension of axis 1
dim2 =10 # dimension of axis 2
dim3 =5 # dimension of axis 3
nspace=3 # number of physical coordinates
veclen=1 # number of elements at each point
data=float # data type (byte, integer, float, double)
field=irregular # field type (uniform, rectilinear, irregular)
coord 1 file=/Termite/loc.dat filetype=ascii offset=3 stride=7
coord 2 file=/Termite/loc.dat filetype=ascii offset=4 stride=7
coord 3 file=/Termite/loc.dat filetype=ascii offset=5 stride=7
variable 1 file=/Temite/decay.dat filetype=ascii offset=1 stride=2

Example 3

The following ASCII description file specifies how to convert the volume data
in the file /usr/avs/data/volume/hydrogen.dat into an AVS field. hydrogen.dat is a
series of binary byte values that represent the probability of finding an elec-
tron at various locations around a hydrogen nucleus. The first three bytes in
the file give the X, Y, and Z dimensions of the data—however, this informa-
tion is not part of the actual data and must be skipped over. You could exam-
ine these three bytes and determine what to use for the dimensions in the
ASCII description file. Thereafter, it is just a matter of reading successive
bytes. offset is not used because this is not an ASCII file. stride is allowed to
default to 1.

AVS field file
ndim=3 # number of dimensions in the field
dim1=64 # dimension of axis 1
dim2=64 # dimension of axis 2
dim3=64 # dimension of axis 3
nspace=3 # number of physical coordinates per point
veclen=1 # number of components at each point
data=byte # data type (byte, integer, float, double)
field=uniform # field type (uniform, rectilinear, irregular)
variable 1 file=/usr/avs/data/volume/hydrogen.dat filetype=binary skip=3

Field Data

IMPORTING DATA INTO AVS 2-25

Example 4

This ASCII description file specifies how to use read field to convert the im-
age data in /usr/avs/data/image/mandrill.x into an AVS field. The first two
words in mandrill.x are 32-bit integers that specify the horizontal and vertical
dimensions of the image. This information must be skipped over — you must
supply it in the ASCII description file. Thereafter, mandrill.x is a succession of
32-bit straight binary words, one word per pixel. However, in AVS, each of
these words is considered to be a vector of 4 bytes. The first byte is the "alpha"
(or "transparency") value for the pixel, and the second through fourth bytes
are the red, green, and blue values for each pixel. Thus, this whole file is treat-
ed as a series of binary bytes.

AVS field file
#
ndim = 2 # number of dimensions in the field
nspace=2 # number of physical coordinates
dim1=500 # dimension of axis 1
dim2=480 # dimension of axis 2
veclen=4 # number of components at each point
data=byte # data type (byte, integer, float, double)
field=uniform # field type (uniform, rectilinear, irregular)
label = alpha, red, green, blue # labels the vector elements
variable 1 file=/usr/avs/data/image/mandrill.x filetype=binary skip=8 stride=4
variable 2 file=/usr/avs/data/image/mandrill.x filetype=binary skip=9 stride=4
variable 3 file=/usr/avs/data/image/mandrill.x filetype=binary skip=10 stride=4
variable 4 file=/usr/avs/data/image/mandrill.x filetype=binary skip=11 stride=4

Example 5
This ASCII description file reads a FORTRAN unformatted ARC 3D dataset.
The file is 34x34x34, made up of floating point numbers. It is irregular; there-
fore there is both computational and coordinate data in two separate files.
The vector length is six. The data file is written as a 24 byte header that must
be skipped over followed by all vector 1 values, all vector 2 values, etc. The
coordinate file is written as a 12 byte header (a full word for each of the X, Y,
and Z dimensions) followed by all X cooordinates, all Y coordinates, then all
Z coordinates. The person is using a relative file specification—the filenames
will be interpreted relative to the directory of this ASCII description file.

AVS field file
to read an Arc 3D file that’s 34x34x34z
ndim = 3
dim1 = 34
dim2 = 34
dim3 = 34
nspace = 3
veclen = 6
data = float
field = irregular
#
coord 1 file=for003.dat filetype=unformatted skip=20 stride=1
coord 2 file=for003.dat filetype=unformatted skip=157236 stride=1
coord 3 file=for003.dat filetype=unformatted skip=314452 stride=1
#

Field Data

2-26 IMPORTING DATA INTO AVS

variable 1 file=for004.dat filetype=unformatted skip=32 stride=1
variable 2 file=for004.dat filetype=unformatted skip=157248 stride=1
variable 3 file=for004.dat filetype=unformatted skip=314464 stride=1
variable 4 file=for004.dat filetype=unformatted skip=471680 stride=1
variable 5 file=for004.dat filetype=unformatted skip=628896 stride=1
variable 6 file=for004.dat filetype=unformatted skip=786112 stride=1

Given that the coordinate file header is 12 bytes, why is the skip value 20? It
is 20 because read field must be directed to skip over the one word FOR-
TRAN unformatted record header, and the one word FORTRAN unformat-
ted record trailer (12+4+4=20). The same 20 bytes must be added to the skip
value for coords 2 and 3. Similarly, the data file’s 24 byte header must have 8
bytes added to it for a total of 32. read field correctly deals with the remain-
ing "invisible" FORTRAN unformatted record header and trailer words in the
remainder of the file, provided that all values pertaining to a dimensions (X,
Y, or Z) and/or all values pertaining to a vector (e.g., all x-momentums) were
written as one record. It will also work if the records were written as repeat-
ing groups (e.g., X, Y, Z; X, Y, Z; X, Y, Z; etc.) or (vec1, vec2, vec3, vec4, vec5,
vec6: repeat). It will not work if the output was generated as "first half of X’s;
second half of X’s", since the intermediate FORTRAN formatting words will
throw off its strides.

Hints on Using read field

If you did not write the application that produces your data, and you instead
use an application acquired in binary form from an outside source, then you
may not know what the format of the application’s binary or unformatted
Fortran data files actually is. This can be difficult to determine just by looking
at the raw data files. However, most established packages do document their
internal file format and you can usually contact the vendor’s support organi-
zation for this information.

It can be hard to tell when you’ve read a dataset correctly. To check on this,
use the print field module. The print field module will display the contents of
an AVS field in ASCII format. You can look at the results in print field’s out-
put display window. If this display window is too narrow, print field also
writes its output to a temporary file that you can view with any text editor.

You can also use the volume bounds module to outline the resultant field’s
extents. If there has been a mistake reading the coordinate information for
rectilinear and irregular datasets, it will usually show up very graphically
with volume bounds.

Here is one useful "debugging" network for importing uniform or irregular
volume data.

Field Data

IMPORTING DATA INTO AVS 2-27

 read field
 | |
 generate colormap | |--------------+
 | | | |
 | +--------| | |
 | | | print field write field
 color range |
 | |
 | |--------------------+
 | | |

any-mapper-module volume bounds
 | |
 |--------------------+
 |
 |
 geometry viewer

You can replace any-mapper-module with any of the modules that produce a
colored geometry picture of the data (such as the orthogonal slice/field to
mesh module pair). If you are trying to produce a vector field, it might be eas-
ier to try reading just one vector element at first until all the other variables
are correct. You would then include an extract scalar module between the
read field and mapper module in this network.

Once you have read the data correctly, you should write it permanently to
disk in binary native AVS field format with the write field module. read field
reads native format AVS fields much more quickly than it is able to parse for-
eign-format files.

You can also be creative with read field. For example, many imaging applica-
tions produce a series of separate images that actually represent slices
through a volume (such as density slices through a cranium, for example).
The scientist may wish to deal with the images as a 3D volume of data. You
could write a very simple C or Fortran program that generates the uniform X
and Y coordinates of the images as ASCII data, as well as a series of rectilinear
Z coordinates that position the slices accurately in space. You can then use
read field to read the original data file, and the new coordinate file to produce
a rectilinear 3D volume representation of the data.

read field Limitations

read field does have limitations:

• Its parsing commands primarily deal with files that are structured with
header information that can be skipped over, followed by data in a regu-
lar, repeating format. read field, for example, could not be used to read an
image file that contained run-length encoded data.

• In many established packages (including PLOT3D) the data that is stored
in the input data file is not the final data that is actually used by the pack-
ages when they perform their computations. For instance, values such as
temperature or friction may be calculated from the raw data using well-
known constant values and formulae. read field cannot, in principle, a
priori know what these automatic calculations should be. It may be nec-

Field Data

2-28 IMPORTING DATA INTO AVS

essary to write modules that further process the original field data into its
final, usable form.

AVS Module: read plot3d

The read plot3d module in the Unsupported module library reads computa-
tional fluid dynamics data files in the National Aeronautics and Space Ad-
ministration’s PLOT3D format and converts them into AVS field format. (To
access the Unsupported module library in the Network Editor, use the Mod-
ule Tools submenu and the Select Module Library button.) There are two
types of PLOT3D files, the XYZ grid files that specify the irregular coordinate
information, and the Q solution files that contain a vector of values for each
point in the grid.

XYZ and Q file pairs can contain a single set of grid/data mappings, or multi-
ple grid/data mappings. The XYZ file can also contain an IBLANK value for
each point, although these data values will not be stored in the output field.
The data within the files can be in either binary, or Fortran formatted or un-
formatted format. XYZ grid file and Q solution file formats must match in all
respects.

read plot3d requires that you know the format (dimensionality, whole/plane,
number of grids, binary/formatted/unformatted, and whether IBLANK val-
ues are present) of the PLOT3D files that you are trying to read. It does not
check to verify that the values it is given map reasonably to the data.

Q solution files contain three to five floating point values for each point in the
grid: X momentum (1D), Y momentum (1D and 2D), Z momentum (1D, 2D,
and 3D), density, and stagnation. The four header values (FSMACH, ALPHA,
RE and TIME) are ignored.

read plot3d does impose some practical limits to the size of the data: No one
dimension can be larger than 1,000,000; the output data can have no more
than 1,000,000,000 points in any one grid; and the maximum number of data
grids is 50.

read plot3d outputs an AVS field (field irregular float 1D, 2D, or 3D of 3-, 4-,
or 5-vector). The AVS field output will match the dimensionality of the origi-
nal PLOT3D dataset. At each point in the grid will be three to five floating
point values: density, X momentum (and Y momentum, and Z momentum, if
appropriate), and stagnation, in that order. Note: The output AVS field repre-
sents only the first grid of multi-grid parameter files. There is no way to pack
multiple grids into a single AVS field.

An additional module, cfd values, is often used in conjunction with read
plot3d. cfd values inputs the field data from read plot3d (including density,
x-momentum, y-momentum, z-momentum, and stagnation), and allows the
user to compute the following values:

• energy

Field Data

IMPORTING DATA INTO AVS 2-29

• pressure
• enthalpy
• mach number
• temperature
• total pressure
• total temperature

AVS Module: read image

Although there is a distinct AVS image file format for storing images on disk,
once AVS reads an image into a network, it treats image data as a 2D 4-vector
byte AVS field. Therefore, the best way to approach importing image data is to
view the problem as converting your image data into an AVS field.

read image Data File Format

The read image module and the Image Viewer subsystem (also implemented
as the image viewer module) can read a file that contains an image—a 2D ar-
ray of pixel values. In AVS, such files should have names that end with a .x
suffix.

The file must begin with a two-word header, which specifies the dimensions
of the image:

first word: number of pixels in horizontal direction (32-bit integer)
second word: number of pixels in vertical direction (32-bit integer)

There is no explicit limit on the size of an image.

The remainder of the file is a sequence of 4-byte (32-bit) words, one for each
pixel of the image. The pixels are arranged rowwise; there is no padding at
the end of a row.

The four bytes of a pixel are interpreted as four component values in the
range 0..255. Three of the bytes are the red, green, and blue color components.
The fourth byte is an auxiliary field, which is used by some AVS modules to
represent an opacity/transparency value:

 +-----------+-----------+-----------+-----------+
 | auxiliary | red | green | blue |
 +-----------+-----------+-----------+-----------+

The AVS image data file format is shown below. Image data files should have
names that end with a .x suffix.

number_of_pixels_in_x_dimension
number_of_pixels_in_y_dimension
pixel_1
pixel_2
pixel_3

Field Data

2-30 IMPORTING DATA INTO AVS

 .
 .
 .
pixel_n

In the example above, the total number of pixels is:

(number_of_pixels_in_x_dimension * number_of_pixels_in_y_dimension)

Note: The AVS image data type is primarily designed to hold data that was
originally produced as RGB (red, green, blue) data, whether as full 24-bit true
color or some more limited format. Many other kinds of scientific data are also
referred to as "image data." For example, medical imaging devices produce
2D or 3D arrays of numbers that represent some quantity, such as density.
This is usually called "image data." However, such data is best represented as
an AVS field, not as an AVS .x image. A field can always be converted into an
image that the AVS Image Viewer can manipulate.

AVS Module: read volume

Although there is a distinct AVS volume file format for storing 3D uniform
volumes on disk (where each element is a byte holding a value from 0-255);
once AVS reads an volume into a network, it treats the volume data as a 3D
uniform scalar byte AVS field. Therefore, the best way to approach importing
this narrow class of volume data is to view the problem as converting your
volume data into an AVS field. You are referred to the "Field Data" discussion
earlier in this chapter.

read volume Data File Format

Measurement data often takes the form of a 3-dimensional array, which corre-
sponds to a uniform lattice in 3D space. Each array value indicates one mea-
surement (temperature, pressure, etc.) at the corresponding lattice point. Such
data can be represented as a uniform 3D field, as described in the preceding
section. For convenience, AVS also provides a simpler volume data format to
accommodate this type of data.

The AVS volume data format requires that each value in the data array be a
byte. (For other data types (e.g. single-precision), you must use the more gen-
eral field construct.) Volume data files should have names that end with a .dat
suffix.

Note: The volume data and field file formats are not compatible.

A volume data file begins with a three-byte header, which specifies the size of
the array in the first (X), second (Y), and third (Z) dimensions. Since each di-
mension’s size must be expressed as a 1-byte number, the largest array sup-
ported by this file format is 255x255x255.

Field Data

IMPORTING DATA INTO AVS 2-31

The remaining contents of the file are the values of a 3D array of bytes, in col-
umn-major order ("FORTRAN-style"). For example, the values in a 50x20x10
array would be stored as follows (using FORTRAN notation):

DATA(1,1,1)
DATA(2,1,1)
DATA(3,1,1)
 ...
DATA(50,1,1)
DATA(1,2,1)
DATA(2,2,1)
DATA(3,2,1)
 ...
DATA(1,20,1)
DATA(2,20,1)
DATA(3,20,1)
 ...
DATA(1,20,2)
DATA(2,20,2)
DATA(3,20,2)
 ...
DATA(1,20,10)
DATA(2,20,10)
DATA(3,20,10)
 ...
DATA(50,20,10)

The volume data file format is shown below:

number_of_voxels_in_x_dimension
number_of_voxels_in_y_dimension
number_of_voxels_in_z_dimension
voxel_1
voxel_2
voxel_3
 .
 .
 .
voxel_n

In the example above, the total number of voxels is:

(number_of_voxels_in_x_dimension *
 number_of_voxels_in_y_dimension *
 number_of_voxels_in_z_dimension)

Programming Examples

If none of the above alternatives for importing data into AVS field format is
satisfactory, you will need to write a module that will read the data into AVS
field format. AVS contains a library of routines for building fields, and storing

Geometry Data

2-32 IMPORTING DATA INTO AVS

and accessing field elements. These routines are described in "Appendix A" of
the AVS Developer’s Guide.

There are several source code examples of modules that read data into AVS
field format. All are found in the directory /usr/avs/examples.

read_image.c
read_image_f.f

These modules, one in C and one in Fortran, read data in AVS image file
format into a 2D 4-vector byte field.

read_vol.c
read_vol_f.f

These modules, one in C and one in Fortran, read data in AVS volume file
format into a 3D scalar byte field.

read_scans.c
This example module reads a set of hypothetically-formatted images
stored in separate files, each representing a planar scan, into a uniform 3D
integer field (a 3D volume of integer data). It assumes a certain location
for the input files, and a pattern to their file names; fixed-size images (64 x
64), a fixed-size header in each image file, an integer of data for each pix-
el, and that the image data is stored in "row major order", that is that the
second index of the data varies most rapidly (1,1 1,2 1,3, etc.). read_scans.c
can be used as a template for a variety of image file formats that need to
be converted to 2D or 3D AVS fields.

read_plot3d.c
The file read_plot3d.c is a C program that reads NASA PLOT3D 3D whole
format datasets into AVS field format.

Note: The read plot3d example is not the same as the read plot3d module
in the AVS Unsupported library.

This is probably the most sophisticated example source code module
since its module description section includes the definition of several dif-
ferent kinds of interface widgets, it must deal with allocating memory to
store the field based upon the changing size of the input datasets, it reads
column-major order data, it reads vector data instead of simple scalars,
and it uses formulae to produce output values not found in the input
data.

Geometry Data

AVS geometry data contains a description of three-dimensional geometries
and scenes, including object type, coordinate data, surface attributes, render-
ing modes, material properties, and transformations.

AVS objects are one of the following types:

Geometry Data

IMPORTING DATA INTO AVS 2-33

Polyhedron
A list of vertices with an indirect list of pointers into these vertices for
each polygon.

Polygon
A list of vertices for each polygon.

Mesh
A 2D array of values, either scalars (for a height field) or vertices.

Sphere
A list of center points and radii.

Polytriangle
A single list of vertices representing polylines, disjoint lines, or a triangle
mesh, where the connectivity is implied by the particular data type.

AVS has routines that allow a module to change several properties of an ob-
ject, including:

• The geometric data defining the object
• Surface or line color
• Render mode (Gouraud, Phong, wireframe, etc.)
• Parent (the name of the parent object)
• Object material properties
• Object, camera, and light transformation
• Object visibility, deletion
• Object color, light source color and camera background color
• Camera background color
• Light source on/off, type
• Texture mapping
• Transformation mode (controls how objects are transformed)
• Selection mode (controls how objects are picked)
• Center of rotation and scaling
• Viewable region of data
• Viewing projection

AVS represents graphical objects in an external binary data format called
geom. geom format files are created using the libgeom library documented in
the "Geometry Library" appendix to the AVS Developer’s Guide.

AVS Module: geometry viewer

The geometry viewer module provides access within an AVS network to the
complete Geometry Viewer subsystem. Many different modules can supply
input geometries. That is, many geometry-format outputs can be connected to

Geometry Data

2-34 IMPORTING DATA INTO AVS

geometry viewer’s geometry input port. All the objects will be combined into
a single scene. Each module providing input to geometry viewer can define
attributes and geometries for any number of objects. Each of these modules
can also define a hierarchical relationship among its objects.

You can also invoke geometry viewer with no inputs, so that the "scene" is
initially empty. Objects can be added to a scene either by upstream modules
or by the Read Object selection on the geometry viewer control panel. Geom-
etries and descriptions sent by upstream modules can be saved to files using
the Save Object and Save Scene selections. In this way, you can save visual-
ization results and retrieve them later with Read Scene or Read Object.

AVS Module: read geom

The read geom module reads a file containing an AVS geometry and outputs
the geometry to one or more modules connected to its output port. The result-
ing object will be named after the file from which it was read.

This module reads geom files only. See the section below on "AVS Geometry
Filters" for a description of how to create AVS geom files.

AVS Module: pdb to geom

The pdb to geom module converts molecular data in Brookhaven Protein
Data Bank format into AVS geom format. It is in the Data Input column of the
Network Editor’s module palette. It expects an input file with a .pdb suffix.
There are two sample input datasets, /usr/avs/filter/example/bwdna.pdb and /usr/
avs/filter/example/crambin.pdb. (This latter can also be found in the /usr/avs/data/
pdb directory.)

For instance, the table below shows part of a file written in the Brookhaven
Protein Data Bank format. This file defines the structure of a particular pro-
tein molecule called "crambin". There is an AVS data input module to read
files in this format. Users can supply their own data input modules for other
data formats.

ATOM 1 HN1 THR 1 17.017 14.972 4.068
ATOM 2 HN2 THR 1 16.297 13.912 2.883
ATOM 3 N THR 1 16.982 14.095 3.587
ATOM 4 HN3 THR 1 17.707 14.470 3.008
ATOM 5 CA THR 1 16.949 12.808 4.348
ATOM 6 C THR 1 15.686 12.779 5.142
ATOM 7 O THR 1 15.236 13.827 5.603
 ...

Geometry Data

IMPORTING DATA INTO AVS 2-35

AVS Geometry Filters

There are a number of geometry filters supplied with AVS that will convert
data into the geom format. These filters fall into two classes:

• Filters that read several file formats commonly found in the technical
community. These geometry filters can be used to import existing
datasets into AVS geom format.

• Filters that read ASCII files in a format unique to AVS. Each of these ge-
ometry filters inputs ASCII data to create one of the fundamental geome-
try structures manipulated by the libgeom programming library, such as
polygons, polyhedrons, meshes, and spheres. These AVS-specific geome-
try filters can be used in two ways:
• You might be able to construct an ASCII file version of your geometry

data that one of these geometry filters could read to create a geom ob-
ject. However, the geometry filters are probably not robust enough to
be used on a production basis for a real application. The mesh.c filter
has the most general utility.

• The geometry filters serve as example programs that show how to
construct the primitive geom structures using libgeom calls. Two of the
geometry filters are written in Fortran in addition to C.

The sources to geometry filters are all located in the directory /usr/avs/filter.
The executable versions of geometry filters are all located in the directory /usr/
avs/bin. Sample datasets in the formats these geometry filters expect are locat-
ed in /usr/avs/filter/example.

The following common file formats have geometry filters:

There is a sample Movie BYU format dataset in /usr/avs/filter/example/cube.byu,
and a sample Mathematica ThreeScript dataset in /usr/avs/filter/example/co-
ne.ts.

The following AVS-specific geometry filters are provided:

Table 2-2. AVS-Readable Geometry File Formats: General Use

File Format File
Suffix

Source
Filename

Executable
Filename

Mathematica ThreeScript .ts -- ts_to_geom
Movie BYU .byu byu.c byu_to_geom
Protein Data Bank .pdb pdb.c pdb_to_geom
UNC .ppoly ppoly.c ppoly_to_geom
Wavefront .wfront wfront_geom.c wfront_to_geom

Table 2-3. AVS-Readable Geometry File Formats: AVS Specific

Object Type Source Filename Executable Filename

polyhedron polyh.c polyh_to_geom
disjoint polygon polygon.c, polygon.f polyg_to_geom

Geometry Data

2-36 IMPORTING DATA INTO AVS

The source to each AVS-specific geometry filter includes a description of the
ASCII file format it expects to read. There are sample polygon, polyhedron,
and mesh ASCII data files in /usr/avs/filter/example.

The remainder of this section describes how to use these geometry filters.

Automatic Data Filtering

AVS geometry filters are normally executed at the shell level. The geometry
filter facility is unique in this regard—if, during a Read Object function with-
in the AVS Geometry Viewer, AVS determines (using the filename extension)
that the file you select is in a known data format, it invokes the appropriate
geometry filter automatically to create a corresponding geom file on disk. It
then reads in the object from the .geom file.

When you execute the AVS function Read Object, you select a filename in the
File Browser window. If the file has a .geom, .scr, or .obj extension, AVS reads it
in directly.

If the file has another extension, AVS determines whether the file contains
data in a "known format," as follows:

• It looks in its /usr/avs/bin directory for utility programs named ..._to_geom.
Each such geometry filter determines a particular filename extension. For
instance, the geometry filter utility wfront_to_geom determines the exten-
sion .wfront.

• It compares the extension of the Read Object filename with its list of ge-
ometry filter extensions.

• If there is a match, AVS automatically invokes the appropriate geometry
filter utility, creating a geom-format file of the same name, with a .geom ex-
tension. This file is created in the directory that the original file is located
in.

• The Read Object function is completed by reading in the newly created
.geom file.

Shell-Level Usage of Geometry Filter Utilities

Each of the geometry filters can also be invoked from the shell, in the usual
fashion. Each one reads a single file from stdin and writes a single geom-for-
mat file to stdout. Typically, you should redirect stdout to a file whose exten-
sion is .geom, so that it is directly readable by the AVS application. Command-
Line Options

Most of the geometry filters don’t accept any command line options. The ex-
ceptions are as follows:

mesh mesh.c, mesh.f mesh_to_geom
sphere sphere.c sphere_to_geom

Table 2-3. AVS-Readable Geometry File Formats: AVS Specific

Object Type Source Filename Executable Filename

Geometry Data

IMPORTING DATA INTO AVS 2-37

The ts_to_geom filter utility accepts the following options:

-bbox xmin xmax ymin ymax zmin zmax
Define a bounding box to scale the object down non-uniformly.

-bratios x y z
Alter the aspect ratio of the bounding box. x=1, y=1, z=1 is a uniform as-
pect ratio. x=1, y=1, z=0.5 forces the Z dimension to be half the size of the
X and Y dimensions.

-boxed
Put a wireframe box around the object.

-noscale
Do not attempt to scale the object at all.

The pdb_to_geom filter accepts the following option:

-balls
Use the sphere representation instead of the default ball-and-stick repre-
sentation.

Postprocessor Filters

AVS supplies an additional set of geometry filters, which you can use to post-
process the output of the geom-format converters. For instance, if a file in
Movie BYU format defines an object with normals that point inward, you can
make a .geom file with normals that point outward as follows:

byu_to_geom < myobject.byu | geom_flip > myobject.geom

The geom_flip postprocessor reads and writes a geom-format file, flipping the
normals of the object defined therein.

Geometry Data

2-38 IMPORTING DATA INTO AVS

The following table lists the postprocessor geometry filters supplied. Except
for send_to and animate_to, each filter reads a file from stdin and writes a file
to stdout.

Programming Examples

If none of the geometry filters listed above is satisfactory for your application,
then you can either write a custom geometry filter, or write an AVS geometry-
producing module. As mentioned earlier, the latter approach will be the most
effective solution.

Table 2-4. Postprocessor Filters

Filter Name Description

geom_flip Flip normals of object.
geom_pickable [-non] Make all objects pickable (non-pickable), so

that their attributes can be set (cannot be set)
individually.

geom_scale Scales the object uniformly, so that it lies
within the unit cube, (-1,-1,-1) to (1,1,1).
Also, converts the objects’s normals to unit
length (normalizes them).

geom_to_normls [-scale] length Produces a disjoint-line object that repre-
sents the normals of the input object. The -
scale option specifies the length of the nor-
mals. The default length is 1.

geom_to_text Produces an ASCII version of the input .geom
file.

text_to_geom Produces a .geom version of the input ASCII
file. The combination of geom_to_text and
text_to_geom can be used to transfer geome-
try files between machines with different
byte ordering or different word sizes.

geom_split [name] Creates a series of .geom files, each of which
contains one of the objects defined in the
input file. This is used for input files that
contain more than one geom object. Each
output file is named name.n.geom. If you
don’t specify the optional name, the files are
named split0.geom, split1.geom, etc.

send_to filename Causes a currently-executing AVS program
to read the specified file, which should be a
.geom file.

animate_to -file name geom-file1 geom-file2 Creates a script that defines a cycle object,
stores the script as name.obj, and casues a
currently-executing AVS program to read the
script file. The cycle includes the specified
geom-file sequence.

Unstructured Cell Data

IMPORTING DATA INTO AVS 2-39

In either case, you must use the libgeom calls documented in the AVS Develop-
er’s Guide "Geometry Library" appendix to create an AVS-compatible geome-
try. The source code versions of all of the geometry filters described above are
useful templates for generating geometry filters. There are also several geom-
etry-producing modules in the /usr/avs/examples directory.

Unstructured Cell Data

Unstructured cell data (UCD) is commonly used in structural analysis and
computational fluid dynamics. A UCD data structure consists of an irregular
coordinate structure (or "model") made up of cells. Cells may be points, lines,
quadrilaterals, triangles, tetrahedrons, pyramids, prisms, or hexahedrons.
Each cell has a corresponding number of nodes. Data can be associated with
the entire structure, with each cell, and with each node. The data is structured
as a set of components. Each component can be either a scalar or a vector.

The UCD data type and the library of routines for creating and manipulating
UCD are described in detail in the AVS Developer’s Guide "Unstructured Cell
Data" appendix.

AVS Module: read ucd

read ucd reads an AVS-compatible UCD structure from a file. The file must
have a .inp suffix or it will not be displayed in read ucd’s file browser.. The file
may be ASCII or binary.

Binary UCD files have a different format than ASCII UCD files. Specifically, if
a file is binary then it is assumed that it is in the format output by the module
write ucd.

ASCII UCD files have a simple format described below. For a more detailed
description of both ASCII and binary file formats, see the "Unstructured Cell
Data" appendix of the AVS Developer’s Guide.

ASCII UCD File Format

The input file cannot contain blank lines or lines with leading blanks. The
numbers down the left correspond to the above descriptions and are not part
of the ASCII file. Comments, if present, must precede all data in the file—
comments within the data will cause read errors. The general order of the
data is:

1. Numbers defining the overall structure, including the number of
nodes, the number of cells, and the length of the vector of data as-
sociated with the nodes, cells, and the model.

2. For each node, its node-id and the coordinates of that node in
space. Node-ids must be integers, but any number including non-

Unstructured Cell Data

2-40 IMPORTING DATA INTO AVS

sequential numbers can be used. Mid-edge nodes are treated like
any other node.

3. For each cell: its cell-id, material, type (hexahedral, pyramid, etc.),
and the list of node-ids that correspond to each of the cell's verti-
cies. (The UCD appendix shows the order in which cell verticies are
numbered.)

4. For the data vector associated with nodes, how many components
that vector is divided into (e.g., a vector of 5 floating point numbers
may be treated as 3 components: a scalar, a vector of 3, and another
scalar, which would be specified as 3 1 3 1).

5. For each node data component, a component label/unit label pair,
separated by a comma.

6. For each node, the vector of data values associated with it.
7. That is the end of the node definitions. Cell-based data descrip-

tions, if present, then follow in the same order and format as items
4, 5, and 6.

8. The single model-based data descriptions, if present, comes last.

 # <comment 1>
 .
 .
 .
 # <comment n>
 1. <num_nodes> <num_cells> <num_ndata> <num_cdata> <num_mdata>
 2. <node_id 1> <x> <y> <z>
 <node_id 2> <x> <y> <z>
 .
 .
 .
 <node_id num_nodes> <x> <y> <z>
 3. <cell_id 1> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
 <cell_id 2> <mat_id> <cell_type> <cell_vert 1> ... <cell_vert n>
 .
 .
 .
 <cell_id num_cells> <mat_id> <cell_type> <cell_vert 1> ...<cell_vert n>
 4. <num_comp for node data> <size comp 1> <size comp 2>...<size comp n>
 5. <node_comp_label 1> , <units_label 1>
 <node_comp_label 2> , <units_label 2>
 .
 .
 .
 <node_comp_label num_comp> , <units_label num_comp>
 6. <node_id 1> <node_data 1> ... <node_data num_ndata>
 <node_id 2> <node_data 1> ... <node_data num_ndata>
 .
 .
 .
 <node_id num_nodes> <node_data 1> ... <node_data num_ndata>
 7. <num_comp for cell's data> <size comp 1> <size comp 2>...<size comp n>
 <cell-component-label 1> , <units-label 1>

Unstructured Cell Data

IMPORTING DATA INTO AVS 2-41

 <cell-component-label 2> , <units-label 2>
 .
 .
 .
 <cell-component-label n> , <units-label n>
 <cell-id 1> <cell-data 1> ... <cell-data num_cdata>
 <cell-id 2> <cell-data 1> ... <cell-data num_cdata>
 .
 .
 .
 <cell-id num_cells> <cell-data 1> <cell-data num_cdata>
 8. <num_comp for model's data> <size comp 1> <size comp 2>...<size comp n>
 <model-component-label 1> , <units-label 1>
 <model-component-label 2> , <units-label 2>
 .
 .
 .
 <model-component-label n> , <units-label n>
 <model-id> <model-data 1> <model-data num_mdata>

The UCD structure and library will support either integer or character node-,
cell-, and model-ids, (referred to in the library documentation as names).
However, the read ucd module only accepts integer node-ids, cell-ids, and
model-ids. This is shown in the example below. The ids do not have to be con-
secutively numbered.

Also note that, at present, most of the UCD modules do not make use of cell
and model-based data, thus the input data examples all show "0" for <num-
cdata> and <num-mdata>. User-written modules can use the UCD library to
manipulate cell- and model-based data.

Example ASCII UCD File

The following is an example of a simple UCD file. This UCD structure has 8
nodes in 1 hexahedral cell. Associated with each node is a single scalar data
value, making up one component that this person labels "stress," and specifies
a "lb/in**2" unit label. There is no cell- or model-based data. See the "Un-
structured Cell Data" appendix in the Developer's Guide for more examples.

#
Simple AVS UCD File
#
8 1 1 0 0 <--8 nodes, 1 cell, 1 component of node data
1 0.000 0.000 1.000 <--Node coordinates
2 1.000 0.000 1.000
3 1.000 1.000 1.000
4 0.000 1.000 1.000
5 0.000 0.000 0.000
6 1.000 0.000 0.000
7 1.000 1.000 0.000
8 0.000 1.000 0.000
1 1 hex 1 2 3 4 5 6 7 8 <--cell id, material id, cell type, cell vertices
1 1 <--num data components, size of each component
stress, lb/in**2 <--Component name, units name
1 4999.9999 <--Data value for each node component

Unstructured Cell Data

2-42 IMPORTING DATA INTO AVS

2 18749.9999
3 37500.0000
4 56250.0000
5 74999.9999
6 93750.0001
7 107500.0003
8 5000.0001

Programming Examples

The AVS release includes several sample programs, one in Fortran and threee
in C, that deal with AVS UCD-format files. These sample programs can be
used as models for your own modules.. The UCD library these samples call is
documented in the "Unstructured Cell Data Library" appendix to the AVS De-
veloper’s Guide.

read_ucd.c

The file /usr/avs/examples/read_ucd.c is a C program source. It reads either a bi-
nary or ASCII format UCD dataset (file suffix .inp), creating the UCD struc-
ture format used by the various UCD visualization modules. Note: ignore
the binary section of this example. It reads AVS 3 format UCD binary files; a
format that has changed with the AVS 4 release. The ASCII section is still val-
id.

gen_ucd.f

The file /usr/avs/examples/gen_ucd.f is the Fortran source to a module that first
generates its own scalar or vector hexahedral data, then writes it out as a
UCD structure.

ucd_thresh.c

The file /usr/avs/examples/ucd_thresh.c is the C source to the ucd threshold
module. It is a filter that both reads an existing UCD structure and creates a
new UCD structure as output. There are some extra variables declared in the
header that the program does not actually use.

ucd_extract.c
The file /usr/avs/examples/ucd_extract.c is the C source to the ucd extract mod-
ule. It is a filter that reads an existing UCD structure, extracts various compo-
nents from the data, and outputs a new UCD structure. As with ucd_thresh.c,
there are some extra variables declared in the header that the module does
not use.

Colormap Data

IMPORTING DATA INTO AVS 2-43

Colormap Data

An AVS colormap is a data structure which implements a transfer function
that assigns a color to each value between an upper and a lower bound. A col-
ormap consists of:

• Four arrays of floating-point values, one each for hue, saturation, bright-
ness, and opacity. Each value is normalized between 0.0 and 1.0 inclusive.

• An integer indicating the number of colors — this is the length of each of
the four arrays.

• Floating-point lower and upper bounds that determine the resolution of
the colormap. The lower bound is a data value that maps to the first ele-
ment of each array. The upper bound is a data value that maps to the last
element in each array. All intermediate data values are mapped to ele-
ments within the arrays.

The hue, saturation and brightness (HSB) color space can be thought of as an
inverted cone:

• The hue axis runs circularly around the cone. Example hue values and
corresponding hues are given below:
0.00 = red
0.16 = yellow
 0.33 = green
 0.50 = cyan
 0.66 = blue
 0.83 = magenta

• The saturation axis runs from the center of the cone (white) to its perime-
ter (fully saturated color). Example saturation values are:
0.00 = white
0.50 = partially saturated hue
1.00 = fully saturated hue

• The brightness axis runs from the tip of the cone (black) to the base
(white). Example brightness values are:
0.00 = black
0.50 = partially darkened hue
1.00 = full intensity hue

The opacity value determines the amount of transparency the color has:

0.00 = completely transparent
0.50 = partially transparent
1.00 = completely opaque

AVS Module: generate colormap

The generate colormap module produces an AVS colormap data structure, for
use by modules that transform input data into color values. This module also

Molecule Data Type

2-44 IMPORTING DATA INTO AVS

allows the user to both read and write AVS-compatible colormaps. These col-
ormaps are stored on disk as ASCII files, in the following format:

number_of_entries
hue saturation brightness opacity
hue saturation brightness opacity
hue saturation brightness opacity
 ...
low_value high_value

All values in this file are in floating-point format, with the exception of num-
ber_of_entries, which is an integer. The hue, saturation, brightness, and opac-
ity values are normalized to the range 0.0 - 1.0. For examples of files
containing AVS colormaps, look at several of the files in the directory /usr/avs/
data/colormap.

Molecule Data Type

The molecule data type (MDT) consists of ten defined CHEM objects that can
be combined hierarchically in linked lists to represent the structure of mole-
cules. At the root of the hierarchy is the CHEMmolecule. A CHEMmolecule
is a data structure containing the molecule’s name, and a unit in angstroms or
bohrs. Chained off of the CHEMmolecule is an arbitrarily long list of CHE-
Matoms, CHEMchemunits, CHEMquantums, and user-defined data.

A CHEMatom is a data structure containing the atom’s name, a color to repre-
sent it, its x, y, z position in space within the molecule, and its radius. The
connectivity of the CHEMatom to other atoms, and the nature of the chemical
bond (none, single, double, triple, hydrogen, disulfide, etc.) is specified by a
link to a CHEMcandb data structure. CHEMatoms also contain a provision
for user-defined data. By default, this area specifies the atom’s atomic num-
ber, weight, hybridization type and charge.

CHEMchemunits are used to represent chemical substructures in the CHEM-
molecule. For example, if the CHEMmolecule were DNA, CHEMchemunit
could specify the animo acids of which it is composed.

The CHEMquantum data structure stores quantum information about the
parent molecule such as charge, number of electrons, alpha and beta spin, a
basis set for gaussian functions, molecular orbit, numbers of shells, etc.

The molecule data type and the libchem library that manipulates it is de-
scribed in its own document, the AVS Chemistry Developer’s Guide.

Within the AVS release:

/usr/avs/examples/chemistry
Shows source code examples to chemistry modules.

/usr/avs/data/chemistry
Shows sample chemistry data files.

Molecule Data Type

IMPORTING DATA INTO AVS 2-45

/usr/avs/chem_lib
Contains sample AVS modules that illustrate use of the chemistry data
type. They are not intended as "production" modules. These modules are
not in the Network Editor’s list of default module libraries. To use the
chemistry modules, use the Network Editor’s Read Module Library
function on the Module Tools menu to load the file /usr/avs/chem_lib/
chemistry

/usr/avs/networks/chemistry
Shows the sample chemistry modules at work in networks. These may be
read into the Network Editor using the Read Network function on the
Network Tools menu.

libchem, the molecule data type, and the contents of the example directories
above are also referred to collectively as the "Chemistry Developer’s Kit"
(CDK).

AVS Module: Read structure file

Unlike the other AVS data types, no "standard" file format for the molecule
data type has yet been defined. Data content and representations tend to dif-
fer more widely within the chemistry field than many other disciplines.

Nonetheless, the files /usr/avs/examples/chemistry/CHEMcon_r.c and CHEM-
con_rf.f are C and FORTRAN examples that read files containing AVS mole-
cule data type information and produce MDTs as outputs. Example files in
this format are found in /usr/avd/data/chemistry.

Molecule Data Type

2-46 IMPORTING DATA INTO AVS

STARTING AVS 3-1

CHAPTER 3 STARTING
AVS

Introduction

This chapter describes:

• How to start an AVS session.
• The layout of the main AVS menus; starting and switching among sub-

systems.
• Interactive facilities for learning about AVS.
• How to get online help on using AVS.
• Command line, startup file, and environment variable options that affect

how AVS runs.
• How to add applications to the AVS Applications submenu.

Note: The first time you execute a newly-installed copy of AVS you might see
a notice explaining that AVS must be licensed before it will run. Either you or
your system administrator should follow the instructions given in the prod-
uct installation documentation to obtain an AVS license.

Platform Dependencies

AVS runs on a variety of vendor platforms. Each platform may have unique
requirements for command line, startup file, or environment variable settings
to make AVS run correctly and optimally on that platform. The authoritative
source for how to start AVS on your specific platform is the release notes that
accompany your copy of AVS. On some platforms, these release notes are
available as on-line printable files in a /usr/avs/relnotes directory.

In addition to the operating system requirements such as the correct version
of the OS and graphics libraries, adequate memory and swap space, these are
the AVS startup options that most often need adjusting:

Gamma
NetworkWindow
NoHW
ScreenSize
VisualType
Colors (occasionally needed)

Controlling AVS Startup

3-2 STARTING AVS

There may be additional, platform-specific options. Be sure to consult your
platform’s release notes for specifics.

Normally, you run AVS from a display that is directly-connected to the graph-
ics workstation or computer on which AVS executes. However, you may also
be able to run AVS from any workstation or "X terminal" with color display
hardware and an X11 server that supports at least an 8-plane "PseudoColor
visual." In this configuration, AVS executes as a remote X Window System cli-
ent on another system which runs AVS. Your workstation or X terminal sim-
ply acts as an input/output device, displaying the AVS interface and its
output visualization windows, and sending your keyboard and mouse com-
mands to AVS on the remote system. See the "AVS on Color X Servers" appen-
dix for more information on this feature.

Controlling AVS Startup

Before starting AVS, make sure that the system environment variable DIS-
PLAY is set to indicate the display at which you are working. The X Window
System uses the DISPLAY environment variable to tell it which display to cre-
ate its windows upon.

The basic command to start AVS is simple:

avs

This is usually all that is necessary to start AVS. Beyond this simplest case,
there are many options that you can use to modify how AVS behaves.

Three things can affect how AVS starts. They are listed here in their order of
precedence:

1. Command line options.
2. The .avsrc startup file. The startup file contains keyword-value

pairs. AVS always reads the system default startup file in /usr/avs/
runtime/avsrc first. Users may override or supplement these sys-
tem default options with a personal .avsrc file. AVS will look for a
personal startup file in ./.avsrc (in the current directory), then
$HOME/.avsrc (in your HOME directory). It uses the first of these
two .avsrc files that it finds.

3. Environment variables.

Table 3-1 lists all AVS command line options, .avsrc startup file keywords, and
environment variables. Each is explained in detail in the "AVS Command Line
Options," "AVS .avsrc Startup File," and "AVS Environment variables" sec-

Controlling AVS Startup

STARTING AVS 3-3

tions toward the end of this chapter. There may be additional vendor or plat-
form-specific options, .avsrc keywords, and environment variables..

Table 3-1 AVS Command Line Options, .avsrc Keywords, and Environment
Variables

Command Line
Option

.avsrc Option Environment Variable

class DISPLAYCLASS
cli
compile_library
data DataDirectory
dials DialDevice DIALS
display DISPLAY
gamma Gamma
geometry
graph
image
library ModuleLibraries
modules
netdir NetworkDirectory
network
nodmc DirectModuleCommunication
nohw NoHW
parallel
path Path
reindex
renderer Renderer
separate
server
shm/noshm SharedMemory
size ScreenSize
spaceball SpaceballDevice SPACEBALL
timer
version
usage

Applications
BoundingBox
Colors
DisplayPixmapWindow
GridSize
HelpPath AVS_HELP_PATH
Hosts
ImageAutomagnify
ImageScrollbars
ModulePanelHeight
NetworkWindow
NetWriteAllParms
PrintNetwork
ReadOnlySharedMemory
SaveMessageLog
StackSelector
VisualType
WindowMgr
XWarpPtr

AVS_ADAPT_TABLE

The Main Menu: Basic Interface

3-4 STARTING AVS

The Main Menu: Basic Interface

When you start AVS, the main menu appears within a control panel along the
left edge of the screen (see Figure 3-1).

To enter a subsystem, use any mouse button to click on the subsystem’s menu
button.

The AVS Applications selection produces an additional menu of AVS appli-
cations. The list will vary depending upon what applications are installed
with your system. Base AVS includes two applications, the AVS Demo suite,
and the Data Viewer.

You or your AVS system administrator can add applications to this Applica-
tions menu. See the "Adding to the Applications Menu" section later in this
chapter.

Subsystem Control Panels

Each of the subsystems has its own control panel (usually, along the left edge
of the screen). The control panel is made up of a series of buttons that invoke
various subsystem functions. Click with any mouse button to select any con-
trol panel function.

When you click the Close button at the top of a subsystem’s control panel, the
control panel is "unmapped" from the screen, rather as though you had iconi-
fied the control panel (but without the icon). If you re-enter the subsystem at a
later time, its control panel reappears in the same state that you left it. Sub-

AVS_GEOM_WRITE_V30
AVS_MEM_CHECK
AVS_MEM_HISTORY
AVS_MEM_VERBOSE
AVS_MG_TROFF
EDITOR

Table 3-1 AVS Command Line Options, .avsrc Keywords, and Environment
Variables (Continued)

Command Line
Option

.avsrc Option Environment Variable

The Main Menu: Basic Interface

STARTING AVS 3-5

systems are never truly "exited," their control panels just appear and disap-
pear.

The exception to this is the Network Editor. It has a true Exit button. You
must save your work before leaving the Network Editor with functions such
as the Write Network button.

 Figure 3-1: AVS Main Menu

The Main Menu: Basic Interface

3-6 STARTING AVS

Subsystem control panels are like any other window on the screen. You can
move and resize them. Often, you want more than one control panel on the
screen at a time (e.g., both the Network Editor control panel and the Geome-
try Viewer control panel). Just use your window manager to move the control
panels around the screen to more convenient locations.

If all subsystem control panels are closed, or if they are moved away from
their original location, the AVS main menu reappears.

Switching Among the Subsystems: Data Viewers Button

You can switch from any main menu subsystem to any other subsystem. At
the top of each subsystem’s control panel is a Data Viewers button (see Fig-
ure 3-2). Press and hold down any mouse button over Data Viewers. A pop-up
menu appears listing the other subsystems. Roll the mouse cursor down to
the subsystem you want and release the mouse button. Its control panel will
appear.

Properly-speaking, you are not switching among subsystems so much as you
are causing control panels to be mapped and unmapped from the screen.
When a subsystem’s control panel reappears, it is always the same position
on the screen where it was Closed.

Each subsystem has only one control panel associated with it. Hitting Data
Viewers, then Graph Viewer three times does not produce three Graph View-
er control panels; it just maps the same panel three times in succession.

The exception to this is the Network Editor. To get to the Network Editor, you
must press the main menu’s Network Editor button. This may involve clos-
ing other control panels or moving them with the window manager so that
the original AVS main menu is no longer obscured.

As noted above, the Network Editor is also the only subsystem with a real
Exit button that deletes the current state of your Network Editor work. The
Network Editor asks you to confirm that you want your work deleted before
it exits, giving you a chance to save your work.

 Figure 3-2: Data Viewers Button

Learning AVS

STARTING AVS 3-7

Cancelling Operations

In general, AVS has no cancel function. If you press a button, or make a ma-
nipulation in the Geometry Viewer, Image Viewer, or Graph Viewer, then you
must wait for the results. While you are waiting, do not click on other buttons
or try to use the mouse buttons to move objects around just to see if the inter-
face is alive. AVS will queue these operations. This last is particularly critical
when you are dealing with large datasets or using AVS on a lower-perfor-
mance platform such as an "X terminal."

The one exception is in the Network Editor. You can "hammer" a running
module by dragging its icon to the Hammer icon in the lower right corner
with the left mouse. The module’s process will exit. (Some modules cannot be
hammered. See the "Cancelling an Operation" section in the "Network Editor"
chapter before using this facility.)

Be aware of the size of your data and the computational implications of oper-
ations you request. Many AVS modules and subsystems will warn you if an
operation is going to take a long time and give you the chance to change your
mind. You can use filter modules such as crop and downsize in AVS networks
to reduce the size of field datasets.

Learning AVS

In addition to the documentation, AVS provides two interactive facilities that
you can use to familiarize yourself with the system and the visualization pro-
cess. Both are accessed from the main AVS Applications menu.

AVS Demo Suite

The AVS Demo suite is a pull-down menu interface that accesses a variety of
pre-written Command Language Interpreter scripts that illustrate most as-
pects of the AVS interface.

Control
Provides the main controls for the Demo suite system.

General AVS
Contains scripts that illustratate the capabilities of the Network Editor,
Geometry Viewer, Image Viewer, and Graph Viewer subsystems.

The Modules selection runs scripts that illustrate how most of the sup-
plied AVS modules are used in visualization networks. The scripts are
named after their key component module. They are the same scripts re-
ferred to at the bottom of each module’s "man page" and in the AVS Mod-
ule Reference manual.

Using On-Line Help

3-8 STARTING AVS

Modules is thus similar to the Help Demos facility described below in
"Using On-Line Help."

VisualizationTechniques
Creates networks of modules that illustrate the major scientific visualiza-
tion techniques such as image processing and volume visualization.

Markets
Creates networks of modules that would typically be used to explore data
in various disciplines such as medical imaging and computational fluid
dynamics.

 The AVS Demo suite is described in detail in the AVS Tutorial Guide.

The Data Viewer

The Data Viewer provides a simplified, pulldown menu interface for build-
ing visualization networks. Like the Demo suite, it is a useful tool for the
novice user learning basic scientific visualization techniques and terminology.

The Data Viewer differs from the Demo suite in two key ways:

• The Demo suite uses pre-defined networks. As its name implies, it is
meant to be watched. The Data Viewer allows you to dynamically con-
struct your own visualization networks. You can add and subtract indi-
vidual modules and techniques from the network to see their effects,
gaining a better understanding of how network pieces are combined to
create meaningful wholes. The Data Viewer facilitates a new user’s ac-
tive experimentation with the system.

• The Demo suite’s scripts use pre-defined AVS sample datasets. The Data
Viewer has no such restrictions. You can use it to become familiar with
AVS using your own datasets.

The Data Viewer is described in detail in the AVS Applications Guide.

Using On-Line Help

At all times during an AVS session, on-line help is available. Help takes sever-
al forms.

Help Buttons

All of AVS’s control panels include a Help button at the top. Clicking this but-
ton causes a Help Panel window to appear (see Figure 3-3).

The Help Panel has several areas of interest:

Using On-Line Help

STARTING AVS 3-9

Help Topic Browser
The Help Topic Browser at the top of the panel displays a list of help top-
ics. To get help on a particular topic, just click on it. A text file is loaded
into the browser’s text viewing area.

Help Text Browser
The Help Text Browser is a scrolling window of ASCII text.

Help Demos
The Help Demos button at the upper left of the Help panel pops-up a
scrolling browser of AVS "script" files. (Figure 3-4.) These files, written in
the Command Language Interpreter (CLI) language, automatically exe-
cute parts of AVS. They can be used to dynamically illustrate the interface
and visualization modules.

By default, the Help Demo browser comes up showing the sample mod-
ule and network scripts in /usr/avs/demo/man_scripts. Most of these are
constructed from the example networks on the module man pages.
(These are the same sample scripts as the AVS Demo suite’s Modules se-
lection.).

Clicking on a script causes it to bring up the Network Editor, load a sam-
ple network, and run some interesting data and parameter settings
through it. When the script is finished, it leaves the network in the Net-
work Editor so that you can experiment with it yourself. The next script

 Figure 3-3: The Help Panel

Using On-Line Help

3-10 STARTING AVS

read in will clear the previous network. You must get rid of the last net-
work manually, either by hitting Clear Network, or by simply Exiting the
Network Editor.

While a script is running, you may cause it to Pause, Continue, or Abort.

Other demonstration scripts exist in /usr/avs/demo/image_viewer and /usr/
avs/demo/examples. The examples scripts require that the /usr/avs/examples
modules that they illustrate must have first been compiled. The /usr/avs/
examples/README file has instructions for doing this.

To use the scrollbars present on all the Help panel browsers:

• The left mouse button scrolls upward.
• The effect of the middle button depends on exactly where the cursor is:

• In the arrow box at the top. Click to scroll to the very top of the help
text.

• In the elevator shaft. Click and hold down the button to grab the ele-
vator bar. Moving the bar up or down causes the help text to scroll ac-
cordingly.

• In the arrow box at the bottom. Click to scroll to the very bottom of
the help text.

• The right mouse button scrolls downward.

You can change the size of the viewing area by using the X window manager
to make the entire Help panel window larger or smaller. You can also move
the window using the window manager.

Click on as many topics as you like. When you’re done, click the Close button
to close the Help panel window.

 Figure 3-4: Help Demo Browser

File Browsers and Dialog Typein Panels

STARTING AVS 3-11

Red entries in a help browser indicate subdirectories that contain additional
help screens. You’ll often see the red entry "../(help)" at the top of the Help
Topic Browser list. This indicates the parent directory, /usr/avs/runtime/help,
which contains a group of help screens that provide overall AVS orientation.

Module Editor

In the Network Editor, each computational module in AVS is represented on-
screen by an icon. Clicking on the small square at the right side of the icon
with the middle or right mouse button opens a Module Editor window,
which displays information about the module: a capsule description, its in-
puts and outputs, etc. Clicking on the Show Module Documentation box
pops up a Help Text Browser like the one described above, displaying the
complete manual page for that module.

Shell-Level Help

The module manual pages may also be available through the system shell
command man(1). For this to be true, the /usr/avs/runtime/help/modules directo-
ry must have been added to the man command’s search path.

File Browsers and Dialog Typein Panels

In addition to the subsystem control panels, AVS uses a number of different
kinds of interaction widgets. By far the most common are various browsers.
These are new windows that pop-up on the screen when you press a control
panel button, showing you a selection of choices, like the Help Browsers de-
scribed above. If the length of the list exceeds the size of the browser window,
you can use the scrollbars at the right of the browser to see all the choices.
Most browsers are "sticky," that is, they remain on the screen until you explic-
itly remove them by pressing their Close button.

The most common browser is the File Browser (see Figure 3-5). File browsers
are associated with each subsystem’s "Read" function (e.g., Read Object,
Read Image, Read AVS Plot File). They also appear on all of the read datatype
modules.

The entries in a file browser are color-coded: black entries are files; red entries
are subdirectories (the topmost red entry is usually the parent directory). To
select one of the entries, click on it with any mouse button. Selecting a directo-
ry entry changes the working directory, causing filenames in that directory to
be displayed, along with the names of any subdirectories.

Since a directory might contain a large number of entries, a file browser has a
scroll bar along its right edge. Clicking inside the scroll bar makes additional
entries appear:

File Browsers and Dialog Typein Panels

3-12 STARTING AVS

• The left mouse button scrolls upward.
• The effect of the middle button depends on exactly where the cursor is:

• In the arrow box at the top. Click to scroll the list to the very top.
• In the elevator shaft. Click and hold down the button to grab the ele-

vator bar. Moving the bar up or down causes the list to scroll accord-
ingly.

• In the arrow box at the bottom. Click to scroll the list to the very bot-
tom.

• The right mouse button scrolls downward.

A file browser has these buttons at the bottom:

New Dir
Pops up a dialog typein panel (Figure 3-6) in which you can type the
name of another directory (full pathname or path relative to the current
directory). File browsers default to showing you the contents of the /usr/
avs/data directory. (You can change this with the DataDirectory .avsrc file
option discussed below.)

Be sure the mouse cursor is within the dialog typein box (but not on the
OK or Cancel button) before you start typing the directory name. When

 Figure 3-5: File Browser Widget

Exiting AVS: Saving Work

STARTING AVS 3-13

you click the OK button in the dialog typeinbox, or press the Return key,
or move the cursor outside the panel, the directory whose name you’ve
typed becomes current, and its filenames are displayed in the browser
window.

Should you inadvertently give a filename, it will select that filename as
though you had used New File and select the directory it is in.

Use Backspace to erase the last character or Ctrl-U to erase the entire
name. If you change your mind altogether, click the Cancel button.

New File
Pops up a dialog box that works the same way as the New Dir box. This
allows you to specify the file to be processed, either with a full pathname
or a name relative to the current directory. Should you give a directory
rather than a filename, it will change to the directory.

Close
(not always present) This removes the File Browser widget from the
screen.

You normally have to manually move your mouse cursor into a dialog typein
panel when it appears. This follows X Window System interface conventions
which say that a program should never "warp" a mouse cursor for a user. You
can override this and have AVS move the cursor automatically into dialog
typein panels and other dialog widgets that require a response by setting
XWarpPtr on in your .avsrc startup file.

The other AVS control widgets, most of which are associated with AVS mod-
ules, are discussed in the "Network Editor" chapter.

Exiting AVS: Saving Work

To leave AVS, bring back the AVS Main Menu. This may involve moving
and/or closing subsystem control panels or exiting the Network Editor. Then

 Figure 3-6: Dialog Typein Panel: Entering a Filename

AVS Command-Line Options

3-14 STARTING AVS

press Exit AVS. AVS brings up a dialog box, asking you to confirm that you
wish to exit.

AVS does not "save state" from one session to another. However, the Image
Viewer, Geometry Viewer, and the Network Editor each have commands that
perform a similar function. In the Image Viewer, you can press Save Scene
under the Views menu; in the Geometry Viewer, you can Save Scene under
the Cameras menu; and in the Network Editor, you can Write Network under
the Network Tools menu. Each of these uses the AVS Command Language
Interpreter (CLI) to save a snapshot of the current state of an individual image
or geometry scene, or AVS network. You can read this snapshot in the next
time you use AVS. Check with each subsystem’s chapter to find out what each
saves.

AVS Command-Line Options

There are quite a few options that you can use when issuing the avs com-
mand. All option keywords begin with a hyphen (e.g. -data). In many cases,
the keyword is followed by an additional word (e.g. a directory name). You
must separate the keyword and the additional word with whitespace (SPACE
and/or TAB characters).

All options keywords can be abbreviated, as long as there is no ambiguity. For
example, -data can be abbreviated to -da. But you cannot abbreviate it to -d,
since this might indicate either -data or -display.

In several cases, you can use an entry in the AVS .avsrc startup file as an alter-
native to a command-line option. For example, a DataDirectory entry in the
startup file is equivalent to a -data option. See the next section for details on
the startup file.

-class string
(startup file equivalent: none) This is the command line option equivalent
of the DISPLAYCLASS environment variable. You can use it to make AVS
behave in different ways when it is started from different types of display
hardware. -class has two effects:

1. An Xdefaults file specifies the "look" of the AVS interface; what
shades of grey are used for command buttons, what fonts to use,
whether the background is "stippled" or a flat color, etc. When -
class string is given, AVS does not use the default /usr/avs/runtime/
avs.Xdefaults file. Instead, it looks for an Xdefaults.string file in the /
usr/avs/runtime directory and uses it. At present, the only alternate
X defaults file supplied is Xdefaults.X.

2. If such a file is present, it will use an alternate startup file, /usr/avs/
runtime/avsrc.string. Otherwise, it uses /usr/avs/runtime/avsrc. It
will also look for a .avsrc.string file in the current directory, then
your HOME directory and use it instead of your usual .avsrc file.
-class is often used when running AVS from an "X terminal." See
the full discussion in the "AVS on Color X Servers" appendix.

AVS Command-Line Options

STARTING AVS 3-15

-cli [any CLI command]
(startup file equivalent: none) Run AVS with the Command Language In-
terpreter functioning in the terminal emulator window from which AVS
was invoked. -cli accepts an optional initial command string, which must
be enclosed in quotes, e.g., -cli "script -play name.scr". This command
string will be executed after AVS starts up. See the chapter on the "Com-
mand Language Interpreter" in the AVS Developer’s Guide for details.

-compile_library source_filespec compiled_filespec
(startup file equivalent: none) This is a utility for maintaining module li-
braries whose component modules are changing. It follows a "source
module library" vs "compiled module library" paradigm. Specifically, -
compile_library takes the source_filespec to be an AVS module library file
containing a list of file commands followed by the name of a module bi-
nary file. It executes each module listed in order to extract the module de-
scription information. From this, it generates compiled_filespec as an AVS
module library file containing the description information necessary to
load the module into the Network Editor’s Palette quickly without actu-
ally executing the module binary.

See the "Constructing a Module Library" discussion in the "Advanced-
Network Editor" chapter for more information.

-data directory
(startup file equivalent: DataDirectory) Specifies the directory in which
all subsystem data input file browsers, including the Image Viewer, the
Graph Viewer, the Geometry Viewer, and the data input modules in the
Network Editor, will initially look for data files (files used as input to
computational modules). This is the major tool for redirecting AVS’s de-
fault data input focus off the sample data files provided in /usr/avs/data
and onto your own data files.

The default data directory is /usr/avs/data.

-dials devicefilespec
(startup file equivalent: DialDevice) Specifies the serial communications
port to which a dialbox device is attached (e.g. /dev/tty2). If -dials is
present, AVS automatically connects the dialbox dials to the Geometry
Viewer’s rotation, translation, and scaling transformations. You must
know which serial communications port your dialbox is connected to.
This argument also corresponds to the environment variable DIALS. Di-
alboxes are not supported on all platforms.

-display host:server.screen
(startup file equivalent: none) Specifies the X Window System display on
which AVS is to display. This overrides the current setting of the DIS-
PLAY environment variable.

-gamma number
(startup file equivalent: Gamma) Controls the brightness of the display
for all AVS windows except Geometry Viewer output windows produced
with a hardware renderer. The default varies from platform to platform.

AVS Command-Line Options

3-16 STARTING AVS

Values between 1.7 to 2.2 are good starting points for experimentation.
Higher real values produce a lighter display.

-geometry [geom-option(s)]
(startup file equivalent: none) Automatically invokes the Geometry View-
er subsystem at startup. There will be no Data Viewers button to access
other subsystems. If you use this option, it must be the last option on the
command line, followed only by the options listed below that are specific
to this subsystem. All other options that follow -geometry will be ig-
nored.

-scene scene-file.scene or geomcli-file.scr
(startup file equivalent: none) This option executes the Geometry
Viewer’s Read Scene function, using the file scene-file.scene or geom-
cli-file.scr, depending upon the setting of the AVS_GEOM_-
WRITE_V30 environment variable.

-filter pathname
(startup file equivalent: none) Specifies pathname as the directory to
search for geometry conversion utilities, named ..._to_geom. See
the "Importing Data Into AVS" chapter.

The default directory for these programs is /usr/avs/bin.

-defaults filename
(startup file equivalent: none) Specifies a Geometry Viewer defaults
file. The format of this file is described in the "Geometry Viewer
Script Language" appendix.

-geometry Xgeometry
(startup file equivalent: none) Specifies an X Window System ge-
ometry (e.g. 500x500-5-5) for the initial window created by the Ge-
ometry Viewer.

-noroll
Turns off track rolling. Track rolling occurs when you perform a
transformation and release the mouse button while the mouse is
still moving. This "flings" the transformable, causing it to continue
in motion.

-usage
(startup file equivalent: none) Displays a list of Geometry Viewer
startup options.

-graph
Automatically invokes the AVS Graph Viewer at system startup. There
will be no Data Viewers button to access other subsystems.

-image
Automatically invokes the AVS Image Viewer at system startup. There
will be no Data Viewers button to access other subsystems.

-library filespec
(startup file equivalent: ModuleLibraries) Specifies which AVS module
library file to load into the Network Editor at system startup. Module li-

AVS Command-Line Options

STARTING AVS 3-17

brary files are ASCII files describing sets of modules. /usr/avs/avs_library/
Supported is an example. This is the major tool that allows you to load
your own sets of modules—either modules you’ve written yourself or
subsets of the supplied modules that you have customized to your
needs—instead of always relying on the system default Supported and
Unsupported module libraries specified in the /usr/avs/runtime/avsrc file.

To load more than one module library, use multiple pairs of -library
filespec options.

It is equivalent to using the Network Editor’s Read Module Library func-
tion.

-library causes AVS to load only the libraries specified on the command
line.

-modules directory or filename
(startup file equivalent: none) Specifies a directory or file in which the
AVS Network Editor will initially look for executable modules. All exe-
cutable files in the directory are examined to determine whether they con-
tain one or more modules. Those that do are added to the default module
library modules in the Network Editor’s module Palette.

-modules differs from -library above in that it loads binary module files,
not ASCII module library files. It is slower to load modules as binary files
rather than libraries.

You can use more than one -modules options to specify multiple individ-
ual module binaries, or to have AVS search through multiple directories
for modules. This is the main tool for loading individual modules (per-
haps modules that you are debugging) that you have not yet formalized
into a module library. It is equivalent to the Network Editor’s Read Mod-
ule(s) function. It cannot be used to read remote modules.

The default modules directory is /usr/avs/avs_library.

-netdir directory
(startup file equivalent: NetworkDirectory) Specifies the directory in
which the AVS Network Editor subsystem initially will look for network
files (Read Network and Write Network functions). This is the tool to use
to redirect AVS’s default network focus away from the samples provided
in /usr/avs/networks and onto your own network files.

The default network directory is /usr/avs/networks.

-network network-file
(startup file equivalent: none) Starts AVS and brings up the Network Ed-
itor’s module control panel with the controls for the network displayed.
The full Network Editor subsystem is not displayed or accessible. This is
one way to make an individual production network available to a user.

-nodmc
(startup file equivalent: DirectModuleCommunication 0) Turns off the
default direct module-to-module communication. This is useful if you

AVS Command-Line Options

3-18 STARTING AVS

want to perform timing tests to compare network execution speed with/
without direct module-to-module communication.

-nohw
(startup file equivalent: NoHW 1) Tells the AVS Geometry Viewer to not
initialize any hardware renderers. Without a hardware renderer, the AVS
Geometry Viewer will use a software renderer to create its 3D scenes in-
stead of the platform’s native graphics facilities. -nohw is used when you
are running AVS as a remote X client on a different hardware platform or
when you are using an "X terminal." The software renderer creates an X
image rendering of the 3D scene and ships only the image to the local X
server for display rather than a stream of rendering commands that may
not be understood by the local system.

-nohw is equivalent to the obsolete -swrender.

-parallel n
(startup file equivalent: none) Sets the maximum number of module pro-
cesses that will attempt to execute in parallel at any one time. The default
is 1 (no parallelization.) You should set this figure intelligently for the sys-
tem(s) that you are running on. If two processors are available (a two-pro-
cessor system, or a local and a remote system) then this figure can
reasonably be set to 2. If you give a value that exceeds the number of pro-
cessors available, the underlying operating systems will serialize the pro-
cesses. There is no inherent upper limit to the n parameter.

Modules must be in separate processes to execute in parallel. Most mod-
ules supplied with AVS are combined into a single executable that runs as
a single process. Thus, they will not run in parallel unless they are divid-
ed into separate processes. This may be done wholesale with the -sepa-
rate option (which may greatly increase memory utilization), or precisely
using the Network Editor’s module group editing facility. See the dis-
cussion on parallel module execution in the "Advanced Network Editor"
chapter for more information.

-path directory
(startup file equivalent: Path) Specifies the directory tree in which AVS it-
self is installed.

The default path is /usr/avs. If you specify another path, then the default
data directory and network directory are modified accordingly. For exam-
ple:

If: path = /usr/local/avs
Then: data directory = /usr/local/avs/data

network directory = /usr/local/avs/networks

This option is also useful to switch between multiple versions of AVS (for
example, a test release and a production release).

-reindex
(startup file equivalent: none) This option creates AVS help system .topics
files. It does not start an AVS session. It is useful if you are creating help
files for applications that you want to be accessible through the AVS help

AVS Command-Line Options

STARTING AVS 3-19

system. See the appendix on creating help files in the AVS Developer’s
Guide for more information.

-renderer
(startup file equivalent: Renderer "string") Specifies which renderer will
be the default selected in the Geometry Viewer when a camera window is
first created. "string" is the literal name found on the renderer buttons un-
der the Geometry Viewer’s Cameras menu, usually either "Software Ren-
derer" or "Hardware Renderer", though other strings are possible. It must
match exactly, in spelling, case, and spacing. The double quote marks
must be present. Where there is a hardware renderer available, -renderer
defaults to "Hardware Renderer". If the user specified -nohw, then only
one renderer is available, the software renderer, and this option is ig-
nored.

-separate
(startup file equivalent: none) This option disables AVS’s multiple mod-
ules in one process feature. It forces each module to execute as a separate
process, whether or not it is combined in an executable with other mod-
ules. The option is primarily useful for debugging, or when parallel mod-
ule execution is desired. (In this last case, it is better to not use -separate
on a production basis, since it usually increases memory utilization. In-
stead, individually divide modules into different executables using the
Network Editor’s module process group editing facility.) See the section
on "Multiple Modules in a Single Process" in the AVS Developer’s Guide.

-server
(startup file equivalent: none) This option opens a connection that an ex-
ternal process can use to connect to AVS and exchange with it a stream of
Command Language Interpreter (CLI) commands and their output. See
the chapter on the CLI in the AVS Developer’s Guide for details.

-shm/noshm
(startup file equivalent: SharedMemory on/off) This turns the AVS shared
memory option on and off. When shared memory is on, AVS keeps only
one copy of AVS field and UCD data that all modules in a network share.
(GEOM-format data and pixmaps do not use shared memory.) This im-
proves performance by saving memory and processor time. -noshm can
disable shared memory if, for example, AVS’s use of the finite shared
memory area is interfering with other applications. On most systems,
shared memory is on by default. (Note: shared memory may not be im-
plemented on all systems. See your AVS release notes.)

-size XDIMxYDIM
(startup file equivalent: ScreenSize) Specifies size, in pixels, to use for
AVS’s virtual display screen size. AVS will automatically resize its inter-
face to fit into the virtual screen. You could use this to confine AVS to run
within one section of your screen instead of across the whole screen. The
aspect ratio should be 5x4 for proper results.

AVS .avsrc Startup File

3-20 STARTING AVS

-spaceball devicefilespec
(startup file equivalent: SpaceballDevice) Specifies the serial communi-
cations port to which a Spaceball device is attached (e.g. /dev/tty2). If -spa-
ceball is present, AVS automatically connects the Spaceball device to the
Geometry Viewer’s rotation, translation, and scaling transformations.
You must know which serial communications port your spaceball is con-
nected to. This entry also corresponds to the environment variable SPA-
CEBALL. Spaceballs may not be supported on all systems.

-timer
(startup file equivalent: none) Writes Geometry Viewer performance data
to stderr. This should be used in conjunction with the Object Info panel to
display the number of polygons being rendered. To get the measurement,
use track rolling to set the object in continuous motion (middle mouse
button to rotate, release mouse button while mouse is still moving, there-
by "flinging" the object into continuous motion). Wait several seconds (the
longer, the more accurate), then press any mouse button in the window to
stop the object. Minimize mouse movements while the measurement is
being taken. The measurement looks like:

73 frames in 6.632989 seconds for 11.005596 FPS

FPS stands for "frames per second." By convention, the "standard unit" is /
usr/avs/data/teapot.geom, in the default-sized window, rendered with the
default gouraud shading, with no additional rendering options (color,
shading, etc.). In this case, FPS can be referred to as TPS ("teapots per sec-
ond").

-version
Displays the AVS version number. (Does not start an AVS session.)

-usage
Displays a usage message for AVS. No AVS session is started.

AVS .avsrc Startup File

When it begins execution, AVS searches for a startup file, which specifies such
things as which module libraries to load, the locations of various directories,
how big to make the AVS interface, etc.

AVS always first reads the system default startup file in /usr/avs/runtime/avsrc.
Users may override or supplement the options in the system startup file with
a personal .avsrc file. AVS looks for user .avsrc files in the order listed, using
the first that it finds:

./.avsrc (current directory)
$HOME/.avsrc (home directory)

You can copy the system default /usr/avs/runtime/avsrc file to your HOME di-
rectory or other directory, modify it according to your needs and preferences,
and rename it with the "." prefix.

AVS .avsrc Startup File

STARTING AVS 3-21

If you give the -class X command option, or set the DISPLAYCLASS X envi-
ronment variable, AVS will look for a different startup file: /usr/avs/runtime/
avsrc.X. If this file is not present, it will use the standard /usr/avs/runtime/avsrc
startup file. In the same manner as the normal startup procedure, AVS will
also look for a personal .avsrc.X file in the current directory, then your HOME
directory. This file is used to customize AVS when you are running it from an
"X terminal." See the "AVS on Color X Servers" appendix.

.avsrc Startup File Format

Each line of the AVS startup file consists of keyword-value pair, with
whitespace separating the keyword and the value. For example:

ModuleLibraries /usr/avs/avs_library/Supported /usr/johnp/avs/modules/Modlib
NetworkWindow 867x567+407+2
NetworkDirectory /usr/johnp/avs/nets
DataDirectory /usr/johnp/avs/data
DialDevice /dev/tty02

Often, the keyword corresponds to one of the command line options de-
scribed in the preceding section. If you use a command-line option, it over-
rides the specification, if any, in the startup file.

.avsrc Startup File Keywords

The AVS startup file keywords are listed below. Where startup file keywords
have command line equivalents, see the command line description above for
the most complete discussion of the feature.

Applications filespec
(command line equivalent: none) Causes AVS to use a file other than /usr/
avs/runtime/AVS.applns to build the large Applications menu. This is how
a user would create their his/her set of application networks and have
them accessible from AVS’s Applications menu without modifying the
central system file. If a simple filename is given rather than an absolute
file and pathname, AVS will look for the file in the directory defined by
Path (by default, /usr/avs).

BoundingBox switch
(command line equivalent: none) If BoundingBox 1 is set, then the AVS
Image Viewer and Geometry Viewer will come up with their Bounding
Box control already turned on. A "bounding box" is a less compute-inten-
sive style of moving geometric objects and Image Viewer subimages. In-
stead of moving the object "real time," it only moves a wirebox
representation of the object. Only when you release the mouse button is
the object/subimage rendered at its new location. BoundingBox is most
useful when you are using AVS on lower performance graphics systems,
with the software renderer, or from an "X terminal." BoundingBox is
usually off by default.

AVS .avsrc Startup File

3-22 STARTING AVS

Colors r g b gray
(command line equivalent: none) This option controls how many cells of
a system colormap AVS will attempt to allocate to itself when it starts. r g
b gray represent numbers for red, green, blue, and gray. This is primarily
intended for people who are using AVS from an "X terminal" or Pseudo-
Color workstation that objects to the number of colormap cells that AVS
tries to allocate for itself.

Colors is also used to increase the number of gray colormap cells avail-
able from the default 22 (on PseudoColor systems). You might need this,
for example, if you are doing medical image processing where many fine
distinctions in gray shades are required.

See the "AVS on Color X Servers" appendix for more information on how
Colors works.

DataDirectory directory
(command-line equivalent: -data) Specifies the directory in which the
various AVS data input file browsers used in the subsystems (Image
Viewer, Graph Viewer, and Geometry Viewer) and Network Editor mod-
ules "read data" modules (read field, read geometry, etc.) initially will
look for data files. This is the main tool to refocus AVS’s data input atten-
tion off the sample data files in /usr/avs/data and onto your own data files.

DialDevice devicefilespec
(command-line equivalent: -dials) Specifies devicefilespec as the serial
communications port to which a dialbox device is attached (e.g. /dev/tty1).
If DialDevice is specified, AVS automatically connects the dialbox dials
to the Geometry Viewer’s rotate, translate, and scale transformations.
This entry also corresponds to the environment variable DIALS. Dialbox-
es may not be supported on all platforms.

DirectModuleCommunication switch
(command line equivalent: -nodmc) Turns direct module-to-module com-
munication on and off. This is useful if you want to perform timing tests
to compare network execution speed with/without direct module-to-
module communication. Direct module-to-module communication is on
by default.

DisplayPixmapWindow Xgeometry
(command line equivalent: none) Controls the default X Window System
geometry (size and position) of the display pixmap module’s window.

Gamma number
(command line equivalent: -gamma) Controls the brightness of the dis-
play for all AVS windows except Geometry Viewer output windows pro-
duced with a hardware renderer. The default varies from platform to
platform. Values between 1.7 and 2.2 are good starting points for experi-
mentation. Higher real values produce a lighter display.

AVS .avsrc Startup File

STARTING AVS 3-23

GridSize n
Controls the size in pixels of the Layout Editor’s alignment squares when
Snap to Grid is switched on. The default is 10.

HelpPath directory ...
(command line equivalent: none) Expands the list of directories that AVS
will search to find a module’s documentation when you click Show Mod-
ule Documentation in the module’s Module Editor window. This is use-
ful when you are using modules other than the set provided with AVS.
For the format of the Help path, see the "On-Line Help" appendix of the
AVS Developer’s Guide.

Hosts fullfilespec
(command line equivalent: none) Gives the name of a "Hosts" file that
lists machines, access methods, and directories of remote modules. It pro-
vides a personal override to the system default /usr/avs/runtime/hosts file
when you click on the Network Editor’s Read Remote Module(s) button
under Module Tools. See the "Running Remote Modules" section in the
AVS User’s Guide "Advanced Network Editor" chapter for details.

ImageAutomagnify switch
In AVS 2, the display image window would try to select an appropriate
image magnification factor when the window changed size. In AVS 3 and
later releases, images are not automatically resized when the window is
resized. Turning this option on will restore the AVS 2 behavior of auto-
matically magnifying the image. The default is off.

ImageScrollbars switch
(command line equivalent: none) If set to the value off, suppresses the
adding of scrollbars to display windows that are too small for the image
they are currently displaying. (You can always see more of the image sim-
ply by dragging it with the mouse.)

ModuleLibraries filespec filespec ...
(command line equivalent: -library) Specifies which libraries of modules
will be loaded into the Network Editor’s module palette. The last module
library listed will be the "default" library showing in the module palette
when you enter the Network Editor. The other module libraries listed can
be called up by clicking on their iconic representation at the top of the
Network Editor’s main panel. There is no way to continue the list of
module libraries to a new line; the list must be on one (perhaps very long)
line.

ModulePanelHeight integer
(command line equivalent: none) Controls the proportion of the Network
Construction window devoted to the module Palette as opposed to the
Workspace.

AVS .avsrc Startup File

3-24 STARTING AVS

NetworkDirectory directory
(command-line equivalent: -netdir) Specifies the directory in which the
AVS Network Editor subsystem initially will look for network files (Read
Network and Write Network functions).

NetworkWindow Xgeometry
(command line equivalent: none) Specifies the X Window system geome-
try of the Network Construction Window, which includes the Network
Editor menu, the Module Palette, and the Workspace in which you con-
struct networks of modules. You may need this if your display is substan-
tially smaller than the usual 1280x1024 pixels.

This is not affected by the ScreenSize option. That is, it is assumed to be
in pixels for the screen you are using and not the canonical 1280x1024
screen size.

NetWriteAllParms switch
(command line equivalent: none) Save all parameter values when writing
out a network with the Network Editor’s Write Network button, not just
those changed since the network was created. The default is to save only
the changed parameters.

NoHW switch
(command line equivalent: -nohw) NoHW 1 tells the AVS Geometry
Viewer to not initialize any hardware renderer. Without a hardware ren-
derer, the AVS Geometry Viewer will use a software renderer to create its
3D scenes instead of the platform’s native graphics facilities. NoHW 1 is
used when you are running AVS as a remote X client on a different hard-
ware platform or when you are using an "X terminal." The software ren-
derer creates an X image rendering of the 3D scene and ships only the
image to the local X server for display rather than a stream of rendering
commands that the local display may not understand. The default is
NoHW 0 (do initialize hardware renderers) on systems that support a
hardware renderer.

NoHW 1 is equivalent to the obsolete SWRender 1.

Path directory
(command-line equivalent: -path) Specifies the directory tree in which
AVS itself is installed.

PrintNetwork command
(command line equivalent: none) The Network Editor’s Print Network
button normally sends output to your default printer. This lets you speci-
fy an alternate print command to execute. The output filename is append-
ed to the string you provide. The command should a regular shell
command such as:

lpr -Plw2

ReadOnlySharedMemory switch
(command line equivalent: none) Shared memory is normally "read only."
Occasionally, the system developer might wish to keep shared memory

AVS .avsrc Startup File

STARTING AVS 3-25

turned on, but allow it to be written into. Setting ReadOnlySharedMem-
ory 0 accomplishes this. The default is 1. (Note: shared memory may not
be implemented on all systems. See your AVS release notes.)

Renderer
(command line equivalent: -renderer "string") Specifies which renderer
will be the default selected in the Geometry Viewer when the first camera
window is created. "string" is the literal name found on the renderer but-
tons under the Geometry Viewer’s Cameras menu, usually either "Soft-
ware Renderer" or "Hardware Renderer", though other strings are
possible. It must match exactly, in spelling, case, and spacing. The double
quote marks must be present. Where there is a hardware renderer avail-
able, Renderer defaults to "Hardware Renderer". If the user specified
NoHW 1, then only one renderer is available, the software renderer, and
this option is ignored.

SaveMessageLog switch
(command line equivalent: none) If set to the value on, causes the AVS
message log to be preserved when the AVS session ends normally. By de-
fault, the message log (/tmp/avs_message.log_XXX, where XXX is the AVS
process number) is deleted automatically. The log file is always preserved
if AVS exits abnormally (e.g. Ctrl-C interrupt, system crash).

ScreenSize XDIMxYDIM
(command line equivalent: -size) Specifies the size of AVS’s virtual dis-
play in pixels, confining AVS to run within this area. AVS scales its inter-
face to fit the virtual screen.

SharedMemory switch
(command-line equivalent: shm/noshm) Specifying SharedMemory off
turns off AVS’s shared memory feature.

SpaceballDevice devicefilespec
(command-line equivalent: -spaceball) Indicates the serial communica-
tions port to which a Spaceball device is attached (e.g. /dev/tty1). If Space-
ball is specified, AVS automatically connects the Spaceball to the
Geometry Viewer’s rotate, translate, and scale transformations. This entry
also corresponds to the environment variable SPACEBALL. Spaceballs
may not be supported on all platforms.

StackSelector option
(command line equivalent: none) People who build very large networks
sometimes find that the Network Editor’s control panel "overflows,"
making some of the module buttons difficult to access. Setting StackSe-
lector choice_browser displays the module names as a fixed-size scroll-
ing list similar to the file browsers instead of as the default radio_buttons.

VisualType visualtype
(command line equivalent: none) This command may be necessary when
you are seeing less color rendition than you know your display is capable
of.

AVS Environment Variables

3-26 STARTING AVS

AVS normally uses the X server’s default visual. Occasionally, this is the
wrong visual to use. For example, the default may be set to PseudoColor
when there actually is a TrueColor visual available. (The standard X Win-
dow System command to list which X visuals are available and which is
being used as the default is xdpyinfo. This command may not be available
on all platforms. Its use is described in the "AVS on Color X Servers" ap-
pendix.)

VisualType lets you specify a visualtype, either PseudoColor, TrueColor,
or DirectColor. AVS will then search the X server’s visual list until it
finds the first visual with the given visual type and use it.

You can also specify an explicit visual using the string VisualID followed
by a number n that is the decimal equivalent of the X server’s hexadeci-
mal visual id for the visual you want to use. For example:

VisualType VisualID 41

This degree of precision would be necessary if there were, for example,
multiple TrueColor visuals defined, where the first was a more limited 12-
plane and a subsequent TrueColor visual the full 24-planes.

This option may also be useful to people using AVS from "X terminals."
See the appendix for more information on determining X visuals.

WindowMgr mgr
(command line equivalent: none) This option ensures that the Network
Editor’s Layout Editor and the X Window System window manager that
you are using work correctly together. The default for this parameter is
specified in the /usr/avs/runtime/avs.Xdefaults file. The currently recog-
nized values are: awm, mwm (Motif-style window managers), twm,
uwm, dxwm (a DEC window manager), and olwm (Open Look).

XWarpPtr on
(command line equivalent: none) Causes the mouse cursor to be automat-
ically moved ("warped") into typein dialog boxes when they appear.
XWarpPtr is off by default.

AVS Environment Variables

AVS uses the following environment variables. Only DISPLAY must be set
correctly before AVS will work.

AVS_ADAPT_TABLE switch
Turns on an option that can make modules processing irregular fields
with unevenly-distributed data points execute faster in AVS networks.
This option is off (0) by default. See the detailed discussion under "Opti-
mization--Adaptive Block Tables" in the "Advanced Network Editor"
chapter.

AVS Environment Variables

STARTING AVS 3-27

AVS_GEOM_WRITE_V30 switch
A 1 value causes the Geometry Viewer’s Save Scene and Save Object
functions to save scenes and objects as Geometry Viewer Script Language
.scene and .obj files, as occurred in AVS Release 3.0 and earlier, rather than
in a single CLI .scr file. It is provided for backward compatibility. It is 0
(off) by default.

AVS_HELP_PATH
Specifies one or more locations in the file system for AVS to use when
searching for on-line help files. See the "On-line Help" appendix of the
AVS Developer’s Guide for more on this variable.

AVS_MEM_CHECK switch
AVS_MEM_HISTORY switch
AVS_MEM_VERBOSE integer

These three environment variables are all used by the alternate memory
allocation routines defined in the include file /usr/avs/include/mem_defs.h.
These routines replace the UNIX standard memory allocation utilities
such as malloc with AVS utilities that perform extensive dyanimic memo-
ry allocation/deallocation bug checking. As such, they are only of interest
to the advanced module writer.

See the "Memory Allocation Debugging" section in the "Advanced Top-
ics" chapter of the AVS Developer’s Guide for more information on these
utilities.

AVS_MG_TROFF switch
Causes the AVS Module Generator to generate its module man page doc-
umentation templates in troff format rather than the default preformatted
text man page using tabs and blanks. This option is 0 (off) by default.

DIALS devicefilespec
Indicates the serial communications port to which a dialbox device is at-
tached. Dialboxes may not be supported on all systems.

DISPLAY host:server.screen
Used by the X Window System to indicate the display screen at which
you’re working.

DISPLAYCLASS string
string is used to specify an alternate /usr/avs/runtime/Xdefaults file, such as
the supplied /usr/avs/runtime/Xdefaults.X. Also causes AVS to use alter-
nate .avsrc.string startup files, both the default in the /usr/avs/runtime di-
rectory (no such alternative is supplied with the release), and user .avsrc
files. Both may be customized to make AVS behave differently on differ-
ent types of display hardware, such as an X terminal. -class is the com-
mand line equivalent.

SPACEBALL devicefilespec
Indicates the serial communications port to which a Spaceball device is
attached. Spaceballs may not be supported on all platforms.

Adding to the Applications Menu

3-28 STARTING AVS

Adding to the Applications Menu

The items that appear on the Applications menu are defined in the file /usr/
avs/runtime/AVS.applns. An "application" is a single AVS network. You can
customize the Applications menu, either by modifying the system default
AVS.applns file, or by using the Applications .avsrc startup file option to
specify a different applications file.

The applications file on the AVS release tape is typically organized as follows:

AVS Application File
#
builtin AVS2 Image Viewer
builtin AVS2 Volume Viewer
builtin AVS Demo
$Path/networks/dv/data_viewer Data Viewer

To add a network to the Applications menu, append a line to the /usr/avs/runt-
ime/AVS.applns file like the following:

/usr/username/networkfile Your Application

denotes a comment. The items on the network definition line are:

• The first item is the absolute pathname to the network file.
This file would have been created with the Network Editor, then saved
with the Write Network button. (You might have subsequently edited
this ASCII network file to, for example, remove references to specific in-
put files, or to change the default location of display windows.)

• The remainder of the line is taken as the label for the Applications menu
button. You do not need to enclose it in quotes, even though it may con-
tain blank characters.

Your own applications file would have the same format. No comment lines
are required. The Applications line in the .avsrc file has the following format:

Applications filespec

Where filespec is the name of the alternative applications file. If filespec starts
with a /, it is assumed to be an absolute pathname. Otherwise, it is assumed
to be relative to the AVS Path value.

As you continue to add networks to an applications file, the buttons on the
menu panel will be resized to accommodate the newcomers, up to a reason-
able limit.

When a user presses your application button, AVS reads in the network file
defined for it and puts its network control panel upon the screen, along with
any output display windows.

IMAGE VIEWER SUBSYSTEM 4-1

CHAPTER 4 IMAGE
VIEWER
SUBSYSTEM

Introduction

The AVS Image Viewer subsystem is an interactive tool for displaying, ma-
nipulating, and processing images.

The Image Viewer exists in two forms: as the Image Viewer subsystem acces-
sible from the main AVS menu, and as the image viewer module in the Net-
work Editor’s module Palette.

The Image Viewer performs these functions:

Image ’Display Manager’
In the same way that a window system such as the X Window System
manages a display screen full of many windows, of different sizes, over-
lapping, stacked one above the other that you can create, delete, move
around, resize, raise and lower; the Image Viewer manages a window full
of AVS images, of different sizes, overlapping, stacked one above the oth-
er, that you can create, delete, move around, resize, raise and lower.

The images can come from two sources. You can read them in directly
from disk with the Image Viewer’s Read Image button, or they can flow
into the image viewer module from an AVS network.

 Figure 4-1 Image Viewer Subsystem

 Figure 4-2 Image Viewer Module

Introduction

4-2 IMAGE VIEWER SUBSYSTEM

Image Processor
The Image Viewer’s Image Processing function calls up a sample choice
of networks that implement image processing techniques such as edge
detection, and contrast stretching. These techniques can be applied to
whole images, or to interactively defined parts of images called subimag-
es. (Subimages are sometimes referred to as "Regions of Interest" (ROI).)
The results can be viewed then erased, or made a permanent part of the
output image.

You can apply image processing techniques serially to the same image "in
situ". You can interpolate, then manipulate contrast, without writing inter-
mediate images to disk and reading them back in again between each
step.

You are not restricted to just the sample image processing networks sup-
plied. You can create your own networks, save them, and then call them
up through the Image Viewer’s interface.

The figure facing the first page of this chapter shows the Image Viewer’s
image processing in action. Various image processing techniques are be-
ing used to enhance each quandrant of a chest X-ray.

Supporting these two basic functions are these additional features:

Views
Sets of images are collected together in a scene. There can be multiple
scenes, i.e., there can be multiple sets of images on the screen at once.

Each scene can have multiple viewports. A viewport is a window dis-
playing the same set of images in the same configuration, but from a dif-
ferent point of view.

Configurations of images in scenes can be saved to disk, then read in
again at a later session.

Labels
Whole scenes and individual images can have alphanumeric labels at-
tached to them in various font styles, sizes, and colors.

Action Animation
The Action submenu implements a form of "flipbook" animation. A se-
quence of images flowing into the Image Viewer from the network can be
collected into a cycle of images that can be replayed at a controlled speed.
You can save the cycle of images to disk and replay them at a later ses-
sion.

Command Language Interpreter
Most of the Image Viewer’s functions can be driven from a command file
through the AVS Command Language Interpreter (CLI).

Entering the Image Viewer

IMAGE VIEWER SUBSYSTEM 4-3

Entering the Image Viewer

The Image Viewer can be entered in four ways:

From the shell directly
The following command line invokes the Image Viewer automatically
when AVS starts execution:

 avs -image

When you start AVS and the Image Viewer in this fashion, you cannot
transfer to any other AVS subsystem. See the "Starting AVS" chapter for
additional command line options that affect the way the Image Viewer is
invoked.

From the main menu
You can start the Image Viewer from the AVS main menu. It is the first
choice.

From another subsystem
At the top of each of the four major AVS subsystem control panels (Image
Viewer, Graph Viewer, Geometry Viewer, Network Editor) is a button ti-
tled Data Viewers. Position the mouse cursor over Data Viewers, then
press and hold down any mouse button. A pop-up menu appears. Still
holding the mouse button down, roll the cursor down the pop-up menu
until "Image Viewer" is highlighted, then release the mouse button. This
calls up the Image Viewer’s control panel. If you transfer to the other sub-
systems, then return to the Image Viewer, the Image Viewer’s control
panel will remain in the state that you left it.

In a network
You can include the image viewer module in an AVS network. If you click
on the image viewer module’s "dimple" with the left mouse button, it
calls up the Image Viewer control panel.

There are some important distinctions between the way the Image Viewer
handles images it receives through its own Read Image menu button, and
images that flow into it from a network in its image viewer module guise.
Images received from a network are titled differently. The Image Viewer
Action submenu can only create animations of images that it receives
through a network.

Using the image viewer module as a general rendering utility to display
data images and pixmaps produced by networks is as powerful and flexi-
ble as using the geometry viewer module to display geometries. It is a
more powerful alternative to the display image module.

Both the geometry viewer and graph viewer modules have image out-
put ports. Thus, you can send an image version of the contents of these
windows to the Image Viewer for display, manipulation, image process-
ing and animation by connecting them to the image viewer module’s in-
put port.

Leaving the Image Viewer

4-4 IMAGE VIEWER SUBSYSTEM

The image viewer module also has two output ports:

• The rightmost image output port can be connected to the image to
postscript module to obtain a PostScript file version of the contents of
a scene window.

• The leftmost output port is an image picking port. This port is nor-
mally invisible. When you click on an image with the left mouse but-
ton, it produces a data structure that reports the X, Y location within
the image selected. Other modules can use this information, for ex-
ample, to display the original numeric value present at that location
in the field before it was converted to an ARGB image.

Whichever way you invoke the Image Viewer, you work with objects that are
represented in AVS’s image format. See the "Importing Data Into AVS" chapter
for a discussion of image format.

There are sample AVS image format files in the directory /usr/avs/data/image.

Leaving the Image Viewer

If the Image Viewer was invoked from the shell command line as "avs -image"
then at the top of its main control panel will be a button labeled Exit. Press
Exit with any mouse button to return to the Unix shell.

If the Image Viewer was entered from the main AVS menu or through the
Data Viewers pop-up menu from another subsystem, then there will be a
Close button at the top of its main control panel. Close is not really an exit
button. Close simply takes down the Image Viewer’s control panel; one could
get a similar effect by using the system’s window manager to iconify the con-
trol panel. When you later re-enter the Image Viewer, the control panel is in
the same state that you left it. The only real way to exit the Image Viewer is to
exit AVS altogether from the main menu.

If the Image Viewer was invoked as the image viewer module, then there is
still only one Image Viewer, even though there may be multiple image viewer
modules. The modules are associated with individual Image Viewer scene
windows, not with the Image Viewer itself. Throwing away an image viewer
module deletes its associated scene window.

Image Viewer: Basic Layout

The Image Viewer has three types of windows:

• The main Image Viewer Control Panel
• The viewports. These are display windows that contain sets of images.
• Various pop-up browser windows and typein panels that are used for file

input, selecting image processing techniques, designating the current im-
age, and specifying input and output files.

Image Viewer: Basic Layout

IMAGE VIEWER SUBSYSTEM 4-5

Image Viewer Control Panel

Figure 4-3 is the main Image Viewer control panel. Throughout the control
panel and its submenus, press any mouse button to select any of the control
buttons.

 Figure 4-3: Image Viewer Control Panel

Image Viewer: Basic Layout

4-6 IMAGE VIEWER SUBSYSTEM

The following sections discuss each of the major areas of the main control
panel.

Top Control Bar

Help
Pressing any mouse button over Help invokes the AVS Help Browser
window. By default, the Help Browser will display a selection of topics
specific to the Image Viewer. The browser’s close button removes it. The
Help Browser is described in detail in the "Using Online Help" section of
the "Starting AVS" chapter.

Data Viewers
Pressing any mouse button over Data Viewers brings up a pop-up menu
that switches among the three AVS viewers (Image Viewer, Graph View-
er, and Geometry Viewer). Press any mouse button and hold it down. The
pop-up menu appears. While still holding the mouse button down, roll
the mouse cursor down the list until the subsystem you want to switch to
is highlighted; then, release the mouse button.

Switching to another subsystem does not "exit" or "halt" the Image View-
er, it just brings up the new viewer’s control panel, covering up the Image
Viewer’s.

Close
Pressing any mouse button over Close removes the Image Viewer’s con-
trol panel from the screen. It does not remove any Image Viewer viewport
or browser windows, nor does it "exit" the Image Viewer. The effect is as
though one had "iconified" the control panel.

You do not need to Close the Image Viewer control panel to make room
for other subsystems’ control panels. Just use your window manager to
move it to another part of the screen.

Transform Selection Controls

Figure 4-5 shows the Transform Selection area. There are three kinds of things
that you can move around in the Image Viewer using mouse button controls:
images within viewports; the viewport’s position over the scene of images (like
moving a frame over a stationary picture); or a rubber-banded subimage re-
gion over an image. The same mouse button combinations move all three
things the same way (e.g., the right mouse button always moves things left/
right/up/down). The mouse button "verb" is always consistent.

 Figure 4-4 Top Control Bar

Image Viewer: Basic Layout

IMAGE VIEWER SUBSYSTEM 4-7

The three Transform Selection buttons select which of the three objects (im-
age, viewport, subimage) is going to be moved by a mouse button command.
It is a mouse button mode switch.

Transform Image
With Transform Image selected, the right mouse button moves the cur-
rent image up/down/left/right. The shift-middle mouse button combina-
tion scales the current image, making it larger or smaller.

Transform View
With Transform View selected, the right mouse button moves the current
viewport left/right/up/down over the fixed set of images— shifting the
point of view rather than the objects. The shift-middle mouse button
moves the point of view in towards the images, or back away from the
images.

Transform Subimage
Transform Subimage designates that the right mouse button will move
the rubber-banded subimage region left/right/down/up. Shift-middle
mouse button does not, however, resize the subimage region. This is easi-
ly-enough done by just making a new subimage region.

To define a subimage, press and hold down shift-left mouse button. Drag
the mouse cursor to define the subimage region, then release the mouse
button. Subimages can be defined at any time; Transform Subimage does
not have to be selected.

 Figure 4-5 Transform Selection Area

Image Viewer: Basic Layout

4-8 IMAGE VIEWER SUBSYSTEM

Bounding Box
The Bounding Box toggle switch changes the way images, viewports,
and subimages move with the mouse. It is a good thing to select when
you are using AVS on a less-powerful or heavily-loaded graphics work-
station.

Normally, when you move or resize an image, viewport, or subimage, the
system does its best to update the rendering of the picture continuously, in
"real time" as it tracks the mouse. So, as you move an image from point A
to point E, the system tries to keep the picture "live." In practice, what you
get are several intermediate pictures, B, C, D, as the image moves from A
to E. The more horsepower your system has, the smoother and more con-
tinuous the image motion. The more loaded a given system is or the more
complex the image sets, the slower the image display.

Bounding Box avoids this resource-expensive effort at real time redis-
play. With Bounding Box turned on, when you place the mouse over the
current transformable and press the right or shift-middle mouse button, a
white wireframe box enclosing the area of the image/viewport/subim-
age appears. As you hold the button down and move the mouse, the
bounding wireframe box moves—the image/viewport/subimage does not.
You move the bounding box to the destination position, then let go of the
mouse button. Only then is the image/viewport/subimage rendered at
its new position.

Toggling Bounding Box affects all images, viewports, and subimages on
the screen.

Current Image Controls

The next set of buttons and the miniature image window control operations
on the Current Image. See Figure 4-6. You can have many images existing in
many scenes and many viewports. When you start performing image pro-
cessing techniques, or moving images around with the mouse buttons, or
raising and lowering images with respect to one another in a scene, one image
has to be the object of the command: something has to be the Current Image.

 Figure 4-6 Current Image Control

Image Viewer: Basic Layout

IMAGE VIEWER SUBSYSTEM 4-9

Image Title Bar—How Images are Named
The Image Title Bar shows the name of the Current Image.

Each image that enters the Image Viewer gets a name. The name has two
parts, a name and a sequence number: name.sequence#. If the image was
read in directly from a disk file with the Read Image command, its name
will be the same as its disk file name without the ".x" extension. If the im-
age came into the Image Viewer from an AVS network, its name will be
the same as the name of the AVS module that sent it to the Image Viewer
(e.g., "crop"). sequence#’s are assigned sequentially, according to the order
the images entered the Image Viewer.

The Image Viewer has no concept of "top" image as the AVS Geometry
Viewer has (see the "Geometry Viewer" chapter). Images are not orga-
nized into hierarchies, nor do Image Viewer scenes and viewports get
names.

Current Image Browser—Retitling and Picking Images
The Image Title Bar also provides an alternate way to select the Current
Image. It is useful when there are large numbers of images, some of
which may be in obscured windows not easily designated with the
mouse cursor.

Use any mouse button to click on the "dimple" at the right of the Current
Image title bar. This produces a Current Image Browser window. (Figure
4-7.)

Like all AVS browsers, you pick an image by highlighting its name with
the mouse cursor and pressing any mouse button. The Current Image

 Figure 4-7 Current Image Browser

Image Viewer: Basic Layout

4-10 IMAGE VIEWER SUBSYSTEM

Browser window is "sticky," that is, it stays on the screen until removed
by clicking on its Close button. Closing the Current Image Browser win-
dow is like iconifying it. If you call it up again, it will be in the same state
as you left it.

The Current Image Browser window also renames images. Click on the
browser’s Edit Name button. A new window pops up with a typein area
for the new image name. The mouse cursor must be moved inside the
typein area or anything you type is ignored. For simple editing functions,
the Backspace key deletes the previous character, and Ctrl-U erases the
whole line.

Note: Do not retitle images if you intend to save the network containing the
image viewer module. When the network is read in again, it will not be able
to find the retitled image.

Current Image Window
The miniature Current Image Window displays an immediately-recog-
nizable miniature picture of the Current Image.

You can use the Current Image Window to select the current image in yet
another way. With the mouse cursor in the Current Image Window, start
clicking any mouse button. This cycles through the images in the current-
ly-selected scene.

Reset/Normalize
The Reset button causes the Current Image to revert back to the same size
and same position it had when it first entered the scene, undoing any
moving or rescaling that might have been done to the image. It does not
remove Image Processing techniques performed on the image, even those
not made permanent with Set Current Image, nor does it reset an image’s
name. Reset works on individual images; it does not reset whole scenes.

The Normalize button expands the size of an image until the larger of its
two dimensions fills the current viewport. This works even if the view-
port window has been resized. If an image is offset within the viewport
window, it is enlarged to the same degree it would have been if it were
centered in the window, but its relative position within the viewport is
not altered. Normalize does not work when Transform View or Trans-
form Subimage is selected.

Function Key Usage

The Image Viewer uses the function keys on the terminal keyboard as follows:

Table 4-1 Function Keys

Function Key Function

F1 Transform Image
F2 Transform View
F3 Transform Subimage
F4 no function

Image Viewer: Basic Layout

IMAGE VIEWER SUBSYSTEM 4-11

Menu Selection Controls

This area of the main control panel contains five buttons that select among the
five Image Viewer submenus. This is the "main Image Viewer menu." The de-
fault is Images.

Submenu Controls

This is the only part of the main control panel that changes. When you select
among Images, Views, Image Processing, Labels, and Action, their unique
submenus containing their individual controls appear in this area. Figure 4-9
shows the submenu for the Images selection. Buttons in this submenu area
are somewhat indented, indicating their sub-level status. Some sub-level
menus have their own sub-submenus that also appear in this area.

When the Image Viewer first comes up, the default Images submenu is show-
ing here. As you move among these submenus, their state is saved for the
next time you enter them.

The state of these submenus may also differ among scenes and images. For
example, in one scene an image may be hidden while in another it is visible
(Show Image/Hide Image). The correct state of the controls is saved for each
image and scene; as you change the current image or scene, the controls
change to reflect the correct settings.

F5 toggle Bounding Box mode
F6 cycles through images in a scene
F7 Reset
F8 Normalize

Table 4-1 Function Keys

Function Key Function

 Figure 4-8 Main Image Viewer Menu Buttons

Image Viewer: Basic Layout

4-12 IMAGE VIEWER SUBSYSTEM

Viewport Windows and Scenes

Image Viewer Scenes are sets of images, of various sizes and positions, with a
particular "stacking order", i.e., A is above B, which are both above C.

Scenes, in themselves, never appear on the screen. What you see on the screen
is one or more viewport windows looking onto a scene.

In Figure 4-10, the top two windows are two viewports onto the same scene,
while the bottom window is a viewport onto a different scene. The bottom
viewport is the current viewport, designated by its red border.

Transforming Viewports

Viewport windows move in two dimensions. To move a viewport, Transform
View has to be toggled at the top of the Image Viewer main control panel. The
transformations that work on viewports are as follows:

• Right Mouse Button—Moves the viewport up/down/left/right over the
collection of images. This is like moving a frame over a collage of pic-
tures.

• Shift-Middle Mouse Button—Moves the viewport inward and outward
to and from the collection of images. The effect is similar to "zooming" in
and out from the scene.

 Figure 4-9 Submenu Controls for Image Processing Button

Image Viewer: Basic Layout

IMAGE VIEWER SUBSYSTEM 4-13

Current Viewport: Switching Among Viewports

Just as there is a current image that will be the object image of any command,
so there is a current viewport that will be the object of any viewport com-
mand. The current viewport is surrounded with a red border.

• Any Mouse Button —Pressed anywhere in any viewport window makes
it the current viewport.

 Figure 4-10 Viewport Windows

Images Submenu

4-14 IMAGE VIEWER SUBSYSTEM

Resizing Viewports

You resize a viewport window using whatever X Window System window
manager you have running, just like any other X window.

When you resize a viewport window, the sizes and relationships among the
images inside the viewport do not change. As a window gets larger, you just
get more background. The Image Viewer does try to keep at least part of all
the images in a scene visible in the viewport window by shifting the viewport
slightly, but it will abandon this strategy and clip images if it has to.

Other aspects of viewports and scenes are discussed below under the Views
submenu.

Browsers

The Read Image, Read Scene, Select Processing Technique, and the Current
Image Title bar all bring up AVS browsers. The browsers are "sticky," that is,
they remain up on the screen until they are taken down with their Close but-
ton. They maintain their state from incarnation to incarnation. To pick an item
from the browser, highlight it with the mouse cursor then press any mouse
button. If a list is too long to fit on one page of the browser, it can be scrolled.

Each browser’s use is discussed under the menu button that invokes it.

The remainder of this chapter discusses each of the Image Viewer submenus
and the Image Viewer Command Line Interpreter.

Images Submenu

The Images Submenu (Figure 4-11) provides the basic utilities for manipulat-
ing individual images. (Note: If you are running AVS on a system with the
visual type PseudoColor, five additional controls will appear at the bottom of
the list. These are explained at the end of this section.)

Activate the functions by positioning the mouse cursor over the button until
it is highlighted, then press any mouse button. The buttons always work
upon the current image or scene.

The current scene is the one that has one of its viewports surrounded with a
red border. There is one way to designate the current scene:

• Move the mouse cursor until it is in one of the viewports looking upon
the scene. Press any mouse button.

As noted earlier, there are three ways to select the current image:

• Position the mouse cursor over the image in a viewport that you want to
become the current image. Press the left mouse button.

Images Submenu

IMAGE VIEWER SUBSYSTEM 4-15

• With the mouse cursor over the Current Image Window on the Image
Viewer control panel, press any mouse button. The Current Image Win-
dow will cycle through the images in the current scene.

• Press any mouse button over the dimple at the right of the Current Image
Title bar. A pop-up browser appears listing all the image names in the
current scene. Roll the mouse cursor down the list until the image name
that you want is highlighted, and press any mouse button.

As a by-product of selecting a current image, you are also setting the current
scene to be the scene of which the image is a member.

Read Image

Press Read Image to read an image directly into the current scene. The image
file must be in AVS image file format. Read Image produces a pop-up file
browser. Which directory the file browser will be showing is controlled by
three things, in this order of precedence:

 Figure 4-11 Images Submenu

Images Submenu

4-16 IMAGE VIEWER SUBSYSTEM

• If you invoked avs with the -data directoryname option, then the file
browser will come up displaying the contents of directoryname.

• If your .avsrc file contains a DataDirectory specification, then the file
browser will come up displaying the contents of the DataDirectory.

• In the absence of other instructions, the file browser will come up display-
ing the contents of the /usr/avs/data directory. Sample image-format files
supplied with AVS are found in its image subdirectory.

The file browser displays:

• Directory names in red
• Filenames with the .x image file suffix in black
• Filenames with the .ims Image Viewer scene file suffix in black.

All other files are invisible. If you want to read in an image file that does not
have the .x or .ims suffix, you must press the file browser’s New File button
and type out the full filename explicitly.

The file browser window stays up on the screen until you press its Close but-
ton. If you Close the file browser window, then open it again by pressing
Read Image, it will once again display the contents of the directory chosen ac-
cording to the precedence list above.

Write Image

Write Image writes a copy of the current image into a file in AVS image file
format. In the absence of any -data command line option or .avsrc file DataDi-
rectory specification, the Image Viewer will try to write the file into the /usr/
avs/data directory. This is a system-owned directory that may not permit users
to write to it. Instead, move the mouse cursor into the typein window and
type a full directory/filename specification for a directory that you have write
access to. When in the typein window, Ctrl-U deletes the entire line, and
Backspace deletes the previous character. The Image Viewer will automatical-
ly append the .x image file suffix. Finish the typein by pressing Enter or by
clicking the OK button. (Note: on systems with filename length restrictions,
there may be a warning in the typein window cautioning you to keep your
filenames less than a certain length.)

When you write the current image, you are saving it "as you see it" on the
screen.

Duplicate Image

The Duplicate Image button makes a copy of the current image within the
same scene. It does not copy images between scenes. (To do this, first Write
Image from one scene, change current scenes, then use Read Image to get it
into a new scene). The new image will have the same name as the original im-

Images Submenu

IMAGE VIEWER SUBSYSTEM 4-17

age, but a higher sequence#. It will be centered within the scene, rather than
the viewport.

Delete Image

This deletes the current image from the current scene. There is no "undo."

Show Image/Hide Image

By switching between these two modes, the current image can be made visi-
ble or invisible within a scene. Though invisible, an image can still be manip-
ulated just as though it were still visible.

Zoom In/Zoom Out

Zoom In/Zoom Out is a separate way of resizing images where the overrid-
ing intent is to keep the original image data exactly preserved.

Zoom In makes an image larger by multiples of four; 4x’s, 16x’s, etc. its origi-
nal size. Zoom Out makes a "Zoomed In" image smaller again by the same
fixed multiples. Figure 4-12 shows the eye section of the mandrill.x image en-
larged to great size. Zooming is similar to rescaling the size of the image with
the shift-middle mouse button, but with these important differences:

 Figure 4-12 Zoom In Image Showing Pixel Replication

Images Submenu

4-18 IMAGE VIEWER SUBSYSTEM

• Both Zoom In/Out and rescaling with the shift-middle mouse button re-
draw the image using "pixel replication." The difference is that Zoom In
works by taking one pixel in the original image and making it into four
pixels ("replicating" it) in the new image, enlarging the area of the image
by four. Zoom Out takes the four equal pixels in an image that was made
larger with Zoom In and turns them back into one pixel. Zoom In/Out are
inverse operations that resize an image by multiples of four. On-screen
image fidelity is always preserved.
On the other hand, when you rescale an image with the shift-middle
mouse button, the result does not have to be an even multiple of the orig-
inal image size. The picture might be 30% larger or smaller. In this style of
rescaling, an algorithm is used to select 30% of the pixels in each dimen-
sion of the image, and replicate (or delete) only them. The picture gets
bigger or smaller, but absolute image fidelity on the screen is sacrificed.
(Since the Image Viewer keeps a copy of the original image, you don’t ac-
tually lose any pixel data if you shrink an image, then enlarge it again.
You will only see the effect if you use Write Image on a highly-shrunken
image, then read it back with Read Image.)

• Because Zoom In and Zoom Out are following a precise approach to en-
larging and shrinking images, you cannot Zoom Out an image (make it
smaller) unless you have first used Zoom In to make it larger.
Nothing happens if you press Zoom In on an image that has been re-
scaled to be smaller than its original size with the shift-middle mouse but-
ton. Image data would be lost.
Similarly, nothing happens if you press Zoom In on an image that has
been rescaled larger or smaller in just the X or Y direction. Again, image
fidelity would be compromised.
For all the same reasons, you cannot Zoom In on an image, then use shift-
middle rescaling, then try to use Zoom Out. When you press the latter,
nothing will happen.

Raise/Lower: Image Stacking Order

Multiple images in scenes have a "stacking order" in the same way that win-
dows on a display screen have a stacking order. Though the images might not
even overlap, still one image is on top, one is on the bottom, and any addi-
tional images are in some order in the middle. Raise raises the current image
one level in the stacking order. Lower drops the current image one level in the
stacking order.

Thus, if you have three images in this stacking order A, B, C, and C is the cur-
rent image, pressing Raise will change the display and stacking order to A, C,
B.

Images Submenu

IMAGE VIEWER SUBSYSTEM 4-19

Raise to Front/Lower to Back

Raise to Front takes the current image, wherever it is in the stacking order,
and makes it the top image. Lower to Back makes the current image the bot-
tom image.

Color Dithering Options

The following five controls only appear when running AVS on a system with
a PseudoColor visual type. On pseudo color (8-plane) systems, it is neces-
sary to reduce the 16,777,215 (256 red x256 green x256 blue) color values pos-
sible in an AVS image down to one of the approximately 216 or so colors
available.

There are normally 6 red tones, 6 green tones, 6 blue tones, and 22 gray tones
available on a pseudo color device. To display the true color image, AVS
takes the origial red value for each pixel and finds the closest numeric value
from amongthe 6 reds available. It does the same for green and blue.

AVS then takes the pixmap that is made up of these three best-matches and
applies a color dithering algorithm to the pixmap. Dithering uses the fact that
the human eye will interpolate between dots of color, creating the impression
of a color value between two actual color values. The dithering process cor-
rects for information lost in the 256-to-6 true color to pseudo color reduction
by comparing how far off each final pixel value was from the original value
against a dithering matrix or mask. Some pixel values have their red/green/
blue values adjusted up or down to create a closer approximation to the origi-
nal true color image.

There are many dithering algorithms possible. These controls allow you to
select among several dithering options:

dither
Selects the default ordered dither.

floyd-steinberg
Generates better pictures than the default dithering algorithm, but is
slower.

random
Uses a randomly-generated dither mask.

monochrome
Computes the luminence of the colors in the input image by combining
the red, green, and blue values for each point according to a linear rela-
tion. The luminence values are then used to find a grayscale equivalent
for each pixel. Selecting monochrome converts the color image into a
monochrome image resembling a black and white photograph. To ex-
tend the grayscale, use the Colors .avsrc keyword.

Views Submenu

4-20 IMAGE VIEWER SUBSYSTEM

none
Each color in the original image is approximated by the closest color in
the colormap as described above. No dithering is applied.

AVS does not perform image color dithering on TrueColor or DirectColor vi-
sual displays.

Views Submenu

The Views submenu (Figure 4-13) provides the basic utilities for manipulating
scenes and viewports.

Create Scene

Pressing Create Scene makes the Image Viewer start a new, empty scene
without any images. In addition, the Image Viewer creates a new viewport
onto the empty scene. The new viewport gets the red border that shows it has

 Figure 4-13 Views Submenu

Views Submenu

IMAGE VIEWER SUBSYSTEM 4-21

become the current viewport, and its empty scene becomes the new current
scene. This is the fundamental way to manipulate two or more independent
sets of images on the screen at the same time.

Note that when you are in the AVS Network Editor and you drag an image
viewer module down from the "Data Output" column in the palette into the
Network Editor workspace, you have done the equivalent of a Create Scene.

Create View

Create View makes a new viewport window onto the current scene. The new
viewport becomes the current viewport, with its red border. What you see is a
new window that contains the same set of images as the viewport you were in
when you pressed Create View. It will be the default Image Viewer viewport
size.

This new viewport will always show exactly what the older viewport dis-
plays— images moved in one will move in the other, etc.— unless you toggle
Transform View at the top of the Image Viewer control panel. Then, move-
ments you make (right mouse button or shift-middle mouse button) are hap-
pening to the viewport’s position over the scene, not to the contents of the
scene itself.

Delete View and Deleting Scenes

Pressing Delete View deletes the current red-bordered viewport. If that view-
port is the last viewport onto a scene, it will also delete that scene.

If there are other viewports on the screen, one of them will become the red-
bordered current viewport/scene in the reverse order that they were original-
ly created.

Save Scene

Save Scene saves the current state of a scene into a file that can be read back
at a later session. It is the way to save a snapshot of your work.

Pressing Save Scene puts a filename typein window up on the screen. By de-
fault, the scene file will be saved in the directory specified by the -data directo-
ryname option on the avs command line, or by the directory defined as the
DataDirectory in your .avsrc file. If neither of those were specified, it will try
to save the file in the user-unwritable /usr/avs/data directory. To change the di-
rectory, type in a complete file specification including the directory path.

Scene files should end with the file suffix .ims. This suffix will be automatical-
ly appended to the filename.

Views Submenu

4-22 IMAGE VIEWER SUBSYSTEM

When you save a scene, you save:

• File references to all the images that have been read into a scene using
Read Image. The image itself is not saved, just the full filename from
where it was originally read.

• All viewports associated with the scene, their background color, and any
transformation to the viewport’s position over the set of images. The po-
sition of the viewports on the display screen is also saved.

• Any transformation that has occurred to the images themselves, includ-
ing their position within the scene, and any rescaling.

• All scene and image labels, their sizes, fonts, colors, and positions.

Save Scene does not save:

• Any image processing technique that was performed on an image, even
those made permanent with the Image Processing submenu’s Set Cur-
rent Image command. (To save a processed image, use Save Image.)

• Any image that entered an image viewer module from an AVS network.

The general reason in both cases is that the .ims file contains references to im-
age files to read in, and image-processed images and images that have arrived
through an AVS network have no file associated with them. .ims scene files
are ASCII files, written in the Image Viewer’s set of of Command Language
Interpreter (CLI) commands.

Read Scene

Read Scene reads a .ims scene file into the Image Viewer. It works just like the
other file browsers in the Image Viewer. Note that the file browser will not
show scene files unless they end with the .ims file suffix. To read in a scene
file that has no .ims file suffix, press New File and type in its name.

Scale X, Y, X and Y

This is a set of radio buttons that modifies how the shift-middle mouse button
rescales images. It does not affect scenes or viewports. By default, Scale X and
Y is selected. This just means that when you resize an image with the shift-
middle mouse button, it gets bigger or smaller in both the X and Y direction
evenly.

If Scale X is chosen, then the shift-middle mouse button changes the size of an
image only in the X direction, making it wider or narrower (Figure 4-14). If
Scale Y is toggled, then shift-middle mouse button makes the image taller or
squatter in the Y direction alone. This is done by causing the "pixel replica-
tion" described above under "Zoom In/Zoom Out" to occur only across rows
of pixels (X), or only down columns of pixels (Y).

Views Submenu

IMAGE VIEWER SUBSYSTEM 4-23

Edit Background Color

Pressing this button brings up a color editor panel. This panel (Figure 4-15)
establishes the background color of the current viewport.

 Figure 4-14 Image Scaled in X Only

 Figure 4-15 Background Color Controls

Image Processing Submenu

4-24 IMAGE VIEWER SUBSYSTEM

There are two ways to set the color; either using the Red Green Blue color
model, or the Hue Saturation Value model. If you change one set of controls
the other set moves accordingly. The default background viewport color is
black.

Image Processing Submenu

The Image Processing submenu (Figure 4-16) contains the facilities for per-
forming image processing techniques upon images.

You can apply the technique to an entire image (Zoom to Image), or to a mov-
able, rubber-banded region of interest of the image called a subimage (shift-
left mouse button). The techniques can be applied experimentally to an image
or subimage, then erased (Restore Current Image), or the change can be
made a permanent part of the Image Viewer’s working copy of the image (Set
Current Image). Techniques can also be applied serially to the images and
subimages. For example, you can contrast stretch an image, then use edge de-
tect upon the modified version of the image. The results of the technique can
be displayed on the original image (In Place), or made to appear in a separate
"scratch" scene (New Window).

Any image, whether it entered the Image Viewer from a file through Read
Image or from an AVS network, can have the techniques performed on it.

 Figure 4-16 Image Processing Submenu

Image Processing Submenu

IMAGE VIEWER SUBSYSTEM 4-25

The image processing techniques themselves (Select Processing Technique)
are pre-defined AVS networks containing AVS modules. The Image Viewer
comes with a set of sample networks, but it is possible for you to define and
use your own image processing networks. This is described at the end of this
section.

Basic Procedure: Select Processing Technique

First, you might want to see and watch the networks that implement the tech-
niques. Call up the AVS Network Editor from the main AVS menu. Then, en-
ter the Image Viewer by pressing Data Viewers at the top of the left Network
Editor control panel and select Image Viewer. The large Network Editor win-
dow remains on the screen, while the Image Viewer control panel appears on
the left.

1. Using either Read Image or a network with the image viewer mod-
ule at the bottom, get an image or images into the Image Viewer
viewport.

2. Press Image Processing to bring up the correct submenu.
3. Press Select Processing Techniques. This brings up the Processing

Technique Browser (Figure 4-17). Some twenty techniques are listed
alphabetically, usually by their core module name. A scrollbar at

 Figure 4-17 Processing Technique Browser

Image Processing Submenu

4-26 IMAGE VIEWER SUBSYSTEM

the right of the browser gives you access to the rest of the tech-
niques.
If you happen to be watching the process in the Network Editor,
two modules appear in the workspace: IV read image and IV write
image. These are special internal modules that retrieve images from
an Image Viewer scene (IV read image), and return them to the Im-
age Viewer (IV write image).

4. Roll the mouse cursor down the technique browser and press any
mouse button to pick a technique. You will see:
• If the modules that make up the image processing network

have control widgets associated with them, then the Network
Editor control panel containing these widgets appears.

• If the modules that make up the image processing network do
not have any control widgets associated with them, no control
panel appears. The visual clue that everything is now "ready" is
the mouse cursor. When you select a technique, it turns into the
"busy" clock. When it changes back to its regular form, the net-
work has been loaded.

• Two of the techniques, geometry mesh and geometry contour
AVS geometries as output instead of AVS images. In this case, a
geometry viewer output window will also appear on the
screen in addition to the existing Image Viewer viewport. Simi-
larly, the generate histogram technique produces a graph
viewer window. The output from these techniques will appear
in these new windows.

The image processing technique is now "loaded" and ready to apply to an im-
age or subimage.

At this point that you can adjust the technique’s control widgets, if present, to
control the parameters of the technique’s modules.

Note: The Image Viewer control panel window may be obscured by the tech-
nique’s control widget panel. Use your window manager to move one of the
control panels to another part of the screen.

Figure 4-18 shows the network for the gradient shade technique as it would
appear in the Network Editor. Immediately next to the network is part of the
control panel for the technique showing gradient shade’s dial widgets.

Zoom to Image: Techniques on Whole Images

When you press Zoom to Image, the network processes the entire current im-
age. With the default In Place toggled, The resulting image is displayed in
place of the original image in the current scene. The original image is still
present and can be recalled with Restore Current Image, or by pointing at the
image with the mouse cursor and pressing the left mouse button, just as
though you were redesignating the image to be the current image.

Image Processing Submenu

IMAGE VIEWER SUBSYSTEM 4-27

You must press Zoom to Image each time you want to apply a technique to an
entire image. (Subimages do not require you to press Zoom to Image.)

Shift-Left Mouse Button: Techniques on Subimages

To apply an image processing technique to a part of an image, you specify a
subimage area.

Position the mouse cursor over the portion of the image you are interested in,
press and hold down shift-left mouse button. With the mouse button still held
down, move the mouse. You will see a rubber-band rectangle appear in a con-
trasting color. Move the mouse until the area of the screen you want to pro-
cess is enclosed, then release the mouse button. At this point, the network
executes, performing the technique on the subimage.

With the default In Place selected, the modified subimage appears as a sec-
tion of the original current image. (See Figure 4-19.) The original whole image
is still present and can be recalled with Restore Current Image, or by clicking
on the image with the left mouse button.

To redefine a subimage area, just press shift-left mouse button again in a new
area. The old subimage disappears as you draw the new subimage area.

 Figure 4-18 Network and Control Panel for Gradient Shade Technique

Image Processing Submenu

4-28 IMAGE VIEWER SUBSYSTEM

Subimages are movable. Near the top of the Image Viewer control panel is the
Transform Subimage button. When you press this, you can move the subim-
age around with the right mouse button, just as though it were a whole im-
age. The network attempts to process the pixels under the moving subimage
while it moves as though it were, instead of a moving "magnifying glass," a
moving "image processing technique glass." Needless to say, when you are
trying to do this, small subimages work faster than large subimages.

If you also switch on Bounding Box below the Transform Subimage button,
then you can move the subimage, but the image processing will not occur in
"real time" as the bounding box moves. Instead, the pixels will only be pro-
cessed after you release the right mouse button and the subimage is in its new
location.

You can’t use shift-middle mouse button to resize subimages. Instead, just re-
draw the subimage area to be larger or smaller.

In Place/New Window

These two switches control where the processed image or subimage will be
displayed. The default In Place causes the output image to be displayed in

 Figure 4-19 Subimage Area

Image Processing Submenu

IMAGE VIEWER SUBSYSTEM 4-29

place of the current image in the current scene. Subimages are displayed on
top of their original image. Neither is permanent unless you press Set Cur-
rent Image.

New Window creates a new, empty scene, and a new viewport looking onto
that scene.

Where In Place puts the processed image in place of the original image, New
Window puts the processed image into the new scene and viewport. It acts as
a kind of "scratch" window.

If you process the whole image with Zoom to Image, the entire new image
appears in the new window. The image will be the same size as the original
image. If you process a subimage, then just the processed subimage rectangle
appears in the new window (Figure 4-20).

The New Window scene can only hold one processed image. Every time you
process an image or subimage, the result replaces the processed image in the
New Window scene.

There can be only one New Window scene and viewport; you can’t make a
new one every time you enact a technique. Also note that you cannot perform
image processing techniques on the contents of the New Window scene. This
kind of serial processing of an image is discussed below.

Set Current Image: Performing Multiple Techniques on One Image

All of the image processing techniques applied to an image or subimage In
Place are temporary. The processed version of the image is displayed in place

 Figure 4-20 Subimage in a New Window

Image Processing Submenu

4-30 IMAGE VIEWER SUBSYSTEM

of the original image, but the Image Viewer keeps a copy of the original im-
age.

Set Current Image makes the changes to the image permanent. The Image
Viewer throws away its original copy of the image, making the modified ver-
sion of the image into the "actual" image.

This is how you perform multiple image processing techniques on one image.

1. Selecting a processing technique and experiment with it on the cur-
rent image until you have achieved the desired result.

2. Make the modifications permanent with Set Current Image. (Per-
haps using Duplicate Image to save this intermediate version.)

3. Select a new processing technique, and continue the process on the
new version of the image.

You cannot use Set Current Image to make the changes shown in the scratch
New Window version permanent on the original image.

There is no way to "undo" the modifications to an image once they have been
made permanent with Set Current Image. You can, of course, re-read the
original image from disk, or re-execute the network that produced the origi-
nal image to get a new copy into the Image Viewer.

Restore Current Image

Restore Current Image undoes the temporary changes that have been made
to an image or subimage. The processed version of the original image that is
being displayed in its place is discarded and the original image restored.
Clicking the left mouse button anywhere in any Image Viewer viewport has
the same effect.

Restore Current Image does not undo the effect of Set Current Image.

Raise Control Panel: Window Management

When one is doing image processing, there can get to be a lot of windows on
the screen. The thing to realize is that there are usually just two control panels
in active use: the Image Viewer’s control panel, and the technique’s control
panel that holds the widget controls for the modules in the network. (If you
picked one of the two techniques that produce geometries, you might also
need to find space for the Geometry Viewer’s control panel. If you picked the
technique that produces a graph, you might also need to find space for the
Graph Viewer’s control panel.) Again, not all techniques produce a control
panel.

Image Processing Submenu

IMAGE VIEWER SUBSYSTEM 4-31

When you invoke a technique with a control panel, that control panel is
placed over the Image Viewer’s control panel. The Image Viewer’s control
panel is still there (unless you explicitly remove it with Close).

There are two strategies to deal with the context switching that has to go on
between the technique’s control panel and the Image Viewer’s:

• Use your window manager to move the technique’s control panel (and
any other control panels) somewhere else on the screen, perhaps even
partially off the screen. The Image Viewer control panel becomes unob-
scured. Switch contexts by just moving the mouse cursor back and forth
between the control panels.

• Alternatively, switch between the two control panels, having first one
then the other "on top." When the technique’s control panel is on top,
raise the Image Viewer’s control panel by pressing Data Viewers and se-
lecting Image Viewer. When the Image Viewer is on top, raise the tech-
nique’s control panel by pressing this Raise Control Panel button.

Select Processing Technique

As described earlier, this button produces a browser that displays the sample
image processing technique options (Figure 4-16). Though it is the last button
on the submenu, it is usually the first item selected. Table 4-2 summarizes
what the image processing techniques actually do. The techniques provided
are samples; you can design your own image processing techniques. This is
described in the next section.

For more information on each technique, including what the techniques dials,
slider bars, and other manipulators do:

• See the appropriate module man page in the AVS Module Reference manu-
al.

• Refer to the online module man pages. These are accessible by clicking
the right mouse button on the module’s icon in the Network Editor. This
produces a "Module Editor" window. Press the Show Module Documen-
tation button to see the man page.

The technique networks themselves are stored in the directory /usr/avs/net-
works/iview.

Table 4-2 Sample Image Processing Techniques

Technique Control
Panel?

Produces Description

add background yes image blend image with a shaded
backdrop

clamp yes image set pixel values <min = min,
and >max = max

contrast stretch yes image removes low-level noise or
increases image contrast

Image Processing Submenu

4-32 IMAGE VIEWER SUBSYSTEM

Limitations

With In Place selected, the Image Viewer does not correctly handle modules
that change the extents (size) of an image, such as crop and downsize. When
you press Zoom to Image, it places the new, smaller image on top of the exist-
ing image in a kind of collage, instead of replacing it. This is true even if you
Set Current Image.

There is a workaround. You can select New Window to receive the new,
smaller image. With the new window the current window, write the cropped
or downsized image to disk with Save Image. You can then read it back into
the Image Viewer with Read Image.

You also need to be a bit careful if you are simultaneously using networks cre-
ated by the Image Viewer’s Processing Technique browser with networks you
yourself have created or read into the Network Editor’s workspace area.

convolve yes image apply various convolution
filters to image

display histogram yes graph plot distribution of RGB
pixel component values

edge detect no image find edges in an image (sobel
module)

geometry mesh yes geometry change image into a surface
where height represents pixel
value

geometry contour yes geometry draw contour lines connect-
ing equal pixel values

gradient shade yes image create pseudo-3D image
using shading where values
change rapidly

histogram stretch yes image enhance low-contrast or
uneven pixel distribution
images

local area ops yes image change pixels to be like
neighbouring pixels with
various filters

luminence no image create black and white ver-
sion of an image

mirror yes image reverse image about X or Y
axis

pseudo color yes image repaint RGB pixel compo-
nents any color with color-
map editor

threshold yes image set pixel values <min and
>max to 0

Table 4-2 Sample Image Processing Techniques

Technique Control
Panel?

Produces Description

Defining Image Processing Techniques

IMAGE VIEWER SUBSYSTEM 4-33

Two independent parties, the Image Viewer and you, are trying to share the
same Network Editor workspace. The Network Editor does not distinguish
between you. Any Network Editor function that you perform (e.g., Clear Net-
work, Write Network) is going to function on all networks in the workspace,
both yours and the Image Viewer’s. The Image Viewer will not properly han-
dle saved Image Viewer networks that also contain "peer," independent net-
works. The Image Viewer can get confused if a Clear Network function has
deleted the IV read image and IV write image modules that it needs to im-
port/export data to the Network Editor.

You can use multiple networks from different sources in the Network Editor
workspace, just do not perform global functions on them.

Defining Image Processing Techniques

It is possible to create your own directory of image processing technique net-
works.

When the Image Processing submenu’s Select Processing Technique button
is pushed, the Image Viewer first looks in the current directory for a file called
image_tech.lst. The "current directory" is the current directory for the termi-
nal emulator window that invoked AVS. Not finding a local image_tech.lst, it
proceeds to use the system default in /usr/avs/networks/iview/image_tech.lst.

Thus, to create your own image processing technique networks:

1. Create a directory to hold the technique networks and utility files.
You will have to invoke AVS with this as your current directory. The Im-
age Viewer does not automatically look for techniques in your
HOME directory, nor according to any command line or .avsrc file
option.

2. Copy the file /usr/avs/networks/iview/base.net into your techniques
directory. Select Processing Techniques uses this file to bring up
the IV read image and IV write image modules when first in-
voked.

3. Create a image_tech.lst file. Use the one in the system directory /usr/
avs/networks/iview/image_tech.lst as a model. Here is what the first
few lines of that file look like:
"add background" "back"
"clamp" "clamp"
"contrast stretch" "contrast"
 .
 .
 .

The left column is the alphanumeric text string that will appear in
the Technique Browser window.
The right column is the name of the network file that contains the
image processing network, without its .net suffix. These network

Labels Submenu

4-34 IMAGE VIEWER SUBSYSTEM

files must also be in the technique directory; one cannot give sys-
tem file directory specifications.
The image_tech.lst file must also be in your technique directory.

4. Create the technique networks using the AVS Network Editor. Use
its Write Network option to write the networks to your technique
directory.
The IV read image module must be at the top of your network to
retrieve an image from the Image Viewer. IV write image must be
at the bottom of the network to return the image to the Image View-
er.
These modules do not appear in the Network Editor’s module pal-
ette. Instead, either use the Network Editor’s Read Network func-
tion to load the file /usr/avs/networks/iview/base.net, or create an
instance of the modules by invoking the Image Viewer’s Select
Processing Technique option and picking any technique. Then en-
ter the Network Editor. (You are likely to be doing this anyway, as
you construct and test a network.)

A system administrator can expand the list of image processing techniques
available to everyone by creating networks for them in /usr/avs/networks/iview
and editing its image_tech.lst file.

Labels Submenu

The Labels menu selection (Figure 4-21) provides access to the Image View-
er’s annotation text facility. You can attach one or more labels to any image.
Each label consists of a single line of text. As you manipulate the image—
move it, resize it, temporarily hide it, permanently delete it, etc.—the image’s
label(s) react accordingly.

You have considerable typographic control, with a wide range of fonts, type
styles, sizes, and colors to choose from. You can also control the position of
each label relative to its associated image; one alternative is to have the label
become a title, which always appears at the same location in the scene, no
matter how the image is transformed.

Current Label: Creating Labels

To create a label, first make sure the image to be labeled is the current image.
If necessary, click on the image with the left mouse button. Then, click the La-
bels menu selection to bring up the Labels submenu.

Place the cursor in the empty box below Current Label, and type any string of
printable characters. Use Backspace (erase last character) and Ctrl-U (erase
entire line) to make corrections.

Labels Submenu

IMAGE VIEWER SUBSYSTEM 4-35

When you’ve finished the label, press Return or move the mouse cursor out
of the Current Label box. When you do so, the label appears on the current
image.

To create additional labels for the same image, select the image again by click-
ing on it with the left mouse button. This clears the Current Label box. (In ad-
dition, you may want to check that the Image Title Bar shows the image and
its name.) As before, type in a text string and press Return.

Editing a Label

To change the text of a label, first click on the label with the left mouse button
to make it appear in the Current Label box (Figure 4-22). Then move the cur-

 Figure 4-21 Labels Submenu

Labels Submenu

4-36 IMAGE VIEWER SUBSYSTEM

sor into the box and type the changes. As when you first create a title, Back-
space erases the last character and Ctrl-U erases the entire label.

Picking and Moving a Label

Each of an image’s labels is "attached" to a particular point on the image. Ini-
tially, this base point is the center of the image. You can move an existing label
so that its base point is at a different X-Y location.

Click and hold down the left mouse button on the label. Drag the cursor to
any other location, then release the button.

Title: Making a Label Into a Title

It is sometimes desirable to have one or more labels that are associated with a
scene, but which don’t move around the screen as the images are trans-
formed. Such labels are called titles. For instance, you might want a title
string for a scene to appear in the upper left corner of the window wherever
the images are displayed. You can change any regular label into a title label by
clicking the Title selection.

A title label "lives" in the scene’s X-Y coordinate system. You can change the
position of a title label using the left mouse button.

Label Menu Selection

The annotation text facility includes a two-level function menu, which allows
you to customize the appearance of each label. The top-level choices, Font Se-
lection and Label Attributes are always visible. Font Selection Submenu

The submenu for Font Selection includes a list of the available fonts, a Bold/
Italic selection, and a Font Height slider bar.

Fonts
The set of font radio buttons selects the X Window System font to be use
for the label.

The fonts that appear may vary from system to system.

 Figure 4-22 Current Label Typein

Labels Submenu

IMAGE VIEWER SUBSYSTEM 4-37

Bold
Italic

Selects the type style. You can click both of these choices to produce a
bold-italic label. (Not all systems support bold and/or italic fonts.)

Label Height
Selects the point size of the label. Labels do not scale continuously; in-
stead, AVS makes best use of the available X Window System fonts. As
you move the slider to indicate a larger or smaller size (using any mouse
button, by clicking or by dragging), the label size changes when a differ-
ent font provides the closest fit. Label Attributes Submenu

The submenu for Label Attributes includes the following choices:

Title
Makes the current label into a title, whose position is fixed within the
scene’s coordinates. See "Making a Label Into a Title" above.

 Figure 4-23 View with Labels and Titles

Labels Submenu

4-38 IMAGE VIEWER SUBSYSTEM

Center
Left
Right

Specifies which part of the label is placed on the base point. Initially, it is
the bottom center. The alternatives are the lower left corner and the lower
right corner.

Edit Label Color
Creates an RGB-HSV color editor with which you can specify the color of
the label.

Action Submenu: Flipbook Animation

IMAGE VIEWER SUBSYSTEM 4-39

Action Submenu: Flipbook Animation

The Action submenu (Figure 4-24) is used to create and play back simple flip-
book animations of images. You can save these animations to a disk file and
read them in again at a later session for replay. Because any data displayed in
an AVS output window is either a geometry, a pixmap, or an image; and ge-
ometries and graphs are always convertible to images (geometry viewer and
graph viewer modules), and pixmaps convertible to images (pixmap to im-
age module), you can animate and save any sequence of displays produced
by AVS. All it takes is disk space.

It is helpful to understand what Action won’t do:

• You cannot animate scenes. For example, you cannot have several images
in a scene and create an animation of them swirling about one another.

 Figure 4-24 Action Submenu

Action Submenu: Flipbook Animation

4-40 IMAGE VIEWER SUBSYSTEM

(This is possible, but you have to use the Image Viewer CLI interface, not
Action.)

• You cannot create animations of changes to images that have been read
into the Image Viewer with the Read Image button. For example, you cannot
press Read Image, read in mandrill.x, then create an animation of the
mandrill’s image as its contrast fades, or as it zooms in to gigantic propor-
tions. (Again, this is possible, but you have to use CLI.)

What Action can do is create an animation out of a series of images flowing
into an image viewer module from another module through an AVS network.

Here is one possible network:

 read volume
 |
 |
 |
 generate colormap |
 | |
 | |
 ------------| |
 colorizer
 |
 |
 tracer
 |

 | |
 image viewer display tracker

There are many opportunities for animation here. By adjusting the controls on
display tracker, you could animate the volume rotating in "space." Adjusting
the Alpha (opacity) controls on tracer itself would animate the hydrogen
atom going from mostly opaque to nearly transparent. Adjusting the generate
colormap module’s colormap editor would animate the volume data chang-
ing color and/or opacity.

To begin an animation, turn on the Action submenu’s store frames button.
This is like pressing a record button. Thereafter:

Each time tracer outputs a new image of the hydrogen atom, this image flows
into the image viewer module and is added as a new page in the flipbook.

A network to capture geometry animations is shown at the end of this section.

Size: A Caution

Images get large quickly. Each pixel is one 32-bit word. A 512x512 image
(roughly 6"x6" on the screen) takes up about 1 megabyte of memory. A flip-

Action Submenu: Flipbook Animation

IMAGE VIEWER SUBSYSTEM 4-41

book animation consisting of 20 images thus takes up 20 megabytes of memo-
ry. Be aware of the memory size and swapspace limitations of your machine.

To save this 20 frame animation as a cycle for future replay will also require 20
megabytes of memory. When flipbook images are stored, they are stored in
their original size. For example, if a 256x256 image enters the image viewer,
where it is then rescaled to 512x512, it is stored in its original 256x256 size.

Store Frames

Store Frames turns "image recording" on and off. It also causes the remainder
of the Action control widgets, normally invisible, to appear. It is off by de-
fault. With Store Frames on, each image flowing into the image viewer mod-
ule is added sequentially to the flipbook. The count shown under Total
Frames will increment. When you have captured all the frames you want to,
turn off Store Frames.

Append Frame

Append Frame adds single images, already in the Image Viewer window, to
the end of the image cycle. It is the oneshot "add just this frame." Frames are
always added at the end of the cycle. (To change the order of frames, you can
edit the ASCII cycle file created by the Read Cycle button described below.)

Total Frames

The Total Frames counter counts the number of frames that are stored in the
cycle. It increments as images are added, either through Store Frames or Ap-
pend Frames.

Current Frame

Current frame shows which of the numbered frames is presently being shown
when you play cycles of images back. Note that this counter starts at zero,
where Total Frames starts at 1.

Step Forward/Step Backward

These two controls play back cycles of images one frame at a time. As you
move forward or back, the Current Frame indicator updates the number of
the frame being shown.

Action Submenu: Flipbook Animation

4-42 IMAGE VIEWER SUBSYSTEM

Continuous

Continuous is an on/off switch that plays the cycle of images continuously,
instead of stepping through them one-by-one manually. It plays them in a
continuous cycle, e.g., 9 10 11 12 0 1 2. To turn replay off, press Continuous
again.

Bounce

Bounce also plays the cycle of images continuously, but in a different order
than Continuous. With Bounce toggled, frames count up then count down,
e.g., 9 10 11 12 11 10 9. To turn Bounce replay off, press it again.

Replay Speed

This slider bar widget speeds up or slows down the rate at which images are
replayed. (This is also affected by the power and load of your machine.) Mov-
ing to the right slows the replay down.

Delete Current Frame

This removes the current frame from the cycle. The total number of frames,
and the sequence shown in Current Frame are immediately renumbered. To
delete an entire cycle, just click on Delete Current Frame repeatedly.

Save Cycle

Save Cycle saves Image Viewer flipbook animation cycles to disk where they
can be retrieved at a later date. Save Cycle raises a typein window that
prompts for a filename in the defined DataDirectory. To save the cycle else-
where, type in a full directory and filename specification. As always, Ctrl-u
deletes the entire typein line, Backspace deletes the previous character, and
Enter or OK completes the entry. AVS automatically appends the .cyc file suf-
fix that denotes a cycle.

Note: On systems with filename length restrictions, the typein may include a
caution advising you to make sure that the total filename length does not ex-
ceed your system’s limit.

The cycle is not one file. The file name.cyc defines the cycle. It is an ASCII file
written in Image Viewer CLI commands. The images that make up the cycle
are automatically stored in separate files in the same directory, one file for
each frame. The file name.cyc.x is the original image. They have the same

Image Viewer Command Language Interpreter

IMAGE VIEWER SUBSYSTEM 4-43

name as the primary cycle file, a midfix (e.g., .cyc0, .cyc1, .cyc2, etc.) that de-
notes the image’s sequence in the cycle, and the standard image file suffix, .x.

As noted earlier under "Size: A Caution," be aware of the size of the images in
the cycle and the number of images and be careful that there is enough avail-
able disk space to hold them.

Read Cycle

Read Cycle raises a file browser displaying the defined DataDirectory. Only
directory files and files with the .cyc suffix are displayed. (.x, and .ims files, if
present, are also displayed.) By clicking on the primary cycle file, the entire
cycle is read into the Image Viewer. Because this could consist of many large
files, it may take some time. Read Cycle also puts up the Action animation
controls. You can now replay and edit the cycle.

A Network for Geometries

This network uses the right image output port of the geometry viewer mod-
ule to create an animation of changes occurring in the Geometry Viewer with
the Image Viewer.

 read geom
 |
 |
 geometry viewer
 |
 |
 image viewer

At the top of this network is the read geom module. However, this could be
replaced with any set of modules (e.g., read field, isosurface) that eventually
produces a geometry.

Image Viewer Command Language Interpreter

It is possible to drive the Image Viewer with commands rather than the X dis-
play interface. The commands can be either typed in interactively from a ter-
minal emulator window while AVS is running, or they can be read from a
script file.

This opens many possibilities:

• One could create scripts that animate the Image Viewer itself, not just the
network-produced images within it.

• One could create demonstration, illustration, and test scripts.

Image Viewer Command Language Interpreter

4-44 IMAGE VIEWER SUBSYSTEM

• One could create scripts that batch-process images.

To run AVS with the Command Language Interpreter (CLI) active, type this:

avs -cli other-options

This starts AVS as usual, but also starts the CLI command line interpreter in
the invoking window. (You might have to press carriage return to get the avs>
prompt.)

To get a list of the Image Viewer CLI commands, type the following:

avs> help Image

This produces a list of the many Image Viewer CLI commands. To get help on
an individual commands, type "help" plus the command name:

 avs> help image_create_scene
 image_create_scene Create a new scene with scene location and size
 Usage: image_create_scene <xlocation ylocation width height>

 avs>

To see sample versions of Image Viewer CLI files, there are several places to
look:

• Create a fairly complex scene with multiple viewports, images, transfor-
mations, etc., then save it out with Save Scene. This .ims scene file is writ-
ten in Image Viewer CLI.

• Look in the directories /usr/avs/demosuite/General/Image and /usr/avs/demo/
image_viewer.
Script files have a .scr suffix.
Scripts can be run interactively. The files in demosuite/General/Image are
accessed through the AVS Demos facility on the Applications menu.
Those in demo/image_viewer are accessed through the Help Browser. Click
on Help, then click Help Demos. This puts up a demo browser.
You can also run scripts interactively through the CLI interpreter as fol-
lows:

avs> script -play filename

The Command Language Interpreter and the Image Viewer set of CLI com-
mands are documented in detail in the "Command Language Interpreter"
chapter of the AVS Developer’s Guide.

GEOMETRY VIEWER SUBSYSTEM 5-1

CHAPTER 5 GEOMETRY
VIEWER
SUBSYSTEM

Introduction

The AVS Geometry Viewer subsystem is an interactive tool with which you
can manipulate and view one or more 3D objects of the fundamental AVS
data type geometry.

The Geometry Viewer exists in two forms. It is an AVS subsystem accessible
from the main menu and from any other AVS subsystem through the Data
Viewers pulldown menu. It also exists as the geometry viewer module in
AVS networks.

It is also possible to drive the Geometry Viewer from the AVS Command Lan-
guage Interpreter (CLI). You can type Geometry Viewer CLI commands to the
CLI and interactively view the results, you can compose a script of CLI Geom-
etry Viewer commands that will run automatically, or you can write a module
that sends Geometry Viewer CLI commands to the Geometry Viewer through
the AVS kernel. The CLI interface is discussed in the "Command Language In-
terpreter" chapter in the AVS Developer’s Guide.

 Figure 5-1 Geometry Viewer Subsystem

 Figure 5-2 Geometry Viewer Module

Renderers

5-2 GEOMETRY VIEWER SUBSYSTEM

A geometry is a collection of points in 3D space, along with additional infor-
mation (typically, indicating connectivity). The geometry defines a simple or
complex 3D object, with the specified points as its vertices. (A geometry can
also include a color, transparency value, and/or normal for each vertex.)

The geometries can enter the Geometry Viewer from two sources:

• You can read .geom format files directly into the Geometry Viewer
through the Read Object button on the Objects submenu. These .geom
format files were either created by a program making calls to the libgeom
library, or were saved to disk during an earlier Geometry Viewer session.
The geometries can be pure geometries (.geom files), or included as part of
higher abstractions called objects, or as components of an entire 3D
scene. Objects and scenes are stored in CLI script files (.scr files).
The Geometry Viewer can also read some external file formats directly
(Wavefront, Movie.BYU, Brookhaven Protein Data Bank, etc.) and trans-
parently convert them to .geom files. See the "AVS Geometry Filters" sec-
tion of the "Importing Data Into AVS" chapter for a list of supported
external file formats.

• Geometries can flow into the geometry viewer module from an AVS net-
work. (See Figure 5-3 and Figure 5-4.) Most AVS mapper modules (scat-
ter dots, isosurface, arbitrary slice, hedgehog, ucd to geom, etc.) create
geometries as their visualization representation of numeric data. This is
signified by their red (geometry) output ports. For example, the isosur-
face module takes the numeric data in a 3D field, then uses the "level" val-
ue you give it to create a 3D contour surface through the volume. This 3D
contour is output as a geometry of verticies in 3D space connected togeth-
er with surfaces. Note that the numbers from which the geometry was derived
are not present in the geometry itself.

The geometry viewer module’s red geometry input port can accept con-
nections from multiple modules. The geometries from all the modules
will be combined together into one scene.

Sample geometries, objects, and scenes are found in the directory /usr/avs/
data/geometry. Sample scripts that produce networks with geometries are ac-
cessible through the Help Panel’s Help Demos browser.

Renderers

The Geometry Viewer supports multiple renderers: both a software renderer
that implements its own graphics rendering techniques in software, output-
ting an X image; and a hardware renderer that uses the workstation plat-
form’s underlying software and hardware graphics facilities to produce its
screen rendering. (On systems without hardware rendering facilities, only the
software renderer is implemented.)

In general hardware rendering, if present, will have superior performance.
However, the software renderer implements certain rendering techniques (2D
and 3D texture mapping, transparency, arbitrary clipping planes, volume ren-

Renderers

GEOMETRY VIEWER SUBSYSTEM 5-3

 Figure 5-3 A Network that Produces Three Geomtries

 Figure 5-4 The Three Geometries Combined in One Scene

Entering the Geometry Viewer

5-4 GEOMETRY VIEWER SUBSYSTEM

dering, outline gouraud) that are often not supported by hardware renderers,
but which are highly effective for scientific visualization.

If you need these rendering techniques (for example, if you are using mod-
ules such as brick, clip geom, or volume renderer) or if you require transpar-
ency, you can switch between hardware and software rendering while in the
Geometry Viewer using the renderer selection menu under the Cameras sub-
menu. If a renderer does not implement a particular rendering technique, the
text in its menu entry is drawn in gray rather than black.

In addition, various command line options and .avsrc file keywords (-nohw, -
renderer, NoHW, and Renderer) control which renderers will be initialized,
and which will be the default when the Geometry Viewer’s first view win-
dow appears. You may need to use -nohw, for example, if you are running
AVS from an X terminal that has no hardware rendering support.

The renderer selection is on a per-camera basis. Each camera has a current
renderer that it uses to draw the objects in that window. The renderer can
also be set through the CLI.

Some platforms may support additional renderer options.

Entering the Geometry Viewer

The Geometry Viewer can be entered in four ways:

From the shell directly
The following command line invokes the Geometry Viewer automatically
when AVS starts execution:

avs -geometry

When you start AVS and the Geometry Viewer in this fashion, you cannot
transfer to any other AVS subsystem. See the "Starting AVS" chapter for

additional command line options that affect the way the Geometry View-
er is invoked.

From the main menu
You can start the Geometry Viewer from the AVS main menu.

From another subsystem
At the top of each of the four major AVS subsystem control panels (Image
Viewer, Graph Viewer, Geometry Viewer, Network Editor) is a button ti-
tled Data Viewers. Position the mouse cursor over Data Viewers, then
press and hold down any mouse button. A pop-up menu appears. Still
holding the mouse button down, roll the cursor down the pop-up menu
until "Geometry Viewer" is highlighted, then release the mouse button.
This calls up the Geometry Viewer’s control panel. If you transfer to the
other subsystems, then return to the Geometry Viewer, the Geometry
Viewer’s control panel will remain in the state that you left it.

Leaving the Geometry Viewer

GEOMETRY VIEWER SUBSYSTEM 5-5

You can move the Geometry Viewer’s control panel with your window
manager. This is convenient if there is more than one control panel (e.g.,
the Network Editor’s) you need to use at one time.

In a network
You can include the geometry viewer module in an AVS network. If you
click on a geometry viewer module’s "dimple" with the left mouse but-
ton, it calls up the Geometry Viewer control panel.

Spaceballs and Dialboxes

It is possible to have either a dialbox or spaceball input device automatically
connected to the Geometry Viewer’s rotation, translation, and scaling trans-
formations. When you first start AVS, add one of the following to the avs com-
mand line:

-dials devicefilespec
-spaceball devicefilespec

Replace devicefilespec with the serial communications port to which the dial-
box or spaceball is connected (e.g., /dev/tty2).

Alternatively, add either of the following to your .avsrc startup file:

DialDevice devicefilespec
SpaceballDevice devicefilespec

These can also be specified as the DIALS or SPACEBALL environment vari-
ables. The details of using the dialbox or spaceball are discussed below in the
"Transformations" section.

Dialboxes and spaceballs may not be supported on all platforms. See the re-
lease notes that accompany AVS on your platform.

Leaving the Geometry Viewer

If the Geometry Viewer was invoked from the shell command line as "avs -ge-
ometry" then at the top of its main control panel will be a button labeled Exit.
Press Exit with any mouse button to return to the system shell.

If the Geometry Viewer was entered from the main AVS menu or through the
Data Viewers pop-up menu from another subsystem, then there will be a
Close button at the top of its main control panel. Close is not really an exit
button. Close simply takes down the Geometry Viewer’s control panel; one
could get a similar effect by using the system’s window manager to iconify
the control panel. When you later re-enter the Geometry Viewer, the control
panel is in the same state that you left it. The only real way to exit the Geome-
try Viewer is to exit AVS altogether from the main menu.

Scenes, Objects, Lights, and Cameras

5-6 GEOMETRY VIEWER SUBSYSTEM

If the Geometry Viewer was invoked as the geometry viewer module, then
there is still only one Geometry Viewer, even though there may be multiple
geometry viewer modules. The modules are associated with individual Ge-
ometry Viewer scene windows, not with the Geometry Viewer itself. Throw-
ing away a geometry viewer module deletes a scene window.

Scenes, Objects, Lights, and Cameras

The Geometry Viewer creates a three dimensional stage called a scene within
which you view geometries. You can create multiple scenes with the Create
Scene function under the Cameras submenu, or by using multiple geometry
viewer modules in a network.

Each scene is composed of:

• A world space. World space is an unbounded three dimensional volume.
Location in world space is measured by world coordinates. World coor-
dinates are a single set of right-handed X, Y, and Z axes. When the Geom-
etry Viewer first comes up, the world coordinate origin (0,0,0) is
positioned in the center of the view window. The XY plane is parallel to
the screen face. Positive Y is straight up, positive X is to the right, and
positive Z is coming straight out of the screen toward you. World coordi-
nates are also referred to synonymously as scene coordinates. You do not
see world/scene axes unless you turn on Axes for Scene under the Cam-
eras submenu. Then they will appear, unlabeled, extending from +5 to -5
in world space in the X, Y, and Z directions. From a conceptual point of
view, world space is immobile.

• A collection of 3D objects assembled into world space. Objects have at-
tributes, such as surface color, various light reflectance characteristics,
and a rendering method (lines, Gouraud shaded, etc.). You can selectively
hide objets so that they are temporarily invisible, although still part of the
scene.

• A collection of lights, defined in the same world coordinate space. Each
light can be a different color.

• One or more view windows, each of which provides its own view of the
collection of objects, as they are illuminated by a collection of lights. Each
view window is considered to be a camera viewing the objects.
Different cameras can produce different views, because each can have its
own position in world coordinates. In addition, cameras can vary in the
way that they display an object (depth cueing lines, with a perspective
projection, Z buffering to expose or hide hidden surface or lines, etc.), and
the renderer, hardware or software, used to produce the picture.

Several scenes may be visible onscreen at the same time. You can manipulate
the various view windows with Geometry Viewer functions such as Create
Camera. You can also manipulate the windows with an X Window system
window manager—they are just like any other windows.

Objects

GEOMETRY VIEWER SUBSYSTEM 5-7

Within each view window, you can translate (move) the objects, lights, and
cameras; scale them (make them larger or smaller), and rotate them. These
three operations are called transformations. Objects, lights, and cameras are
collectively called transformables.

Note: In order to save exactly what you see in a view window, including the
positioning of multiple objects, all of the lighting effects and colors, and all
camera manipulations including Perspective, you must use Save Scene. New
AVS users often spend some time composing an attractive scene, then make
the mistake of using just Save Object, which saves none of these features.

Objects

Objects are read into world space with the Geometry Viewer’s Read Object
function under the Objects submenu, or flow into the geometry viewer mod-
ule from another module.

Objects are organized into a hierarchy.

At the top of the hierarchy is a root object named simply Top.

All objects that you read into the Geometry Viewer, either through Read Ob-
ject or that flow into the geometry viewer module, are children of the Top
level object, and peers of each other.

The hierarchy is normally only these two levels—Top and everything else.
Though you cannot do it from within the Geometry Viewer itself, it is possible
to create multi-level object hierarchies with the Geometry Viewer’s Script
Language (see appendix), the CLI geom_set_parent command, and the lib-
geom library.

Each object:

• Has its own object coordinate system. The Top level object’s coordinates
are initially coextensive with the world coordinate axes. The child objects’
coordinates are initially coextensive with those of the Top level object.

• Each object has extents. Its extents are the minimum rectangular volume
in its own coordinates that the object occupies (max x - minx, max y - min
y, max z - min z). The Bounding Box button will show you the current ob-
ject’s extents as you scale, rotate, or translate the object.

• Each object has a center. This is the point, in its own coordinate system,
about which the object will rotate.

• Each object has a name. The name is of the form name.number. The name
is set by the program that created the geometry. Geometry objects that
come from modules are usually named after the module that created
them. The Geometry Viewer appends a sequence number to the object
name to distinguish between objects coming from two modules with the
same name. You can rename objects using the Current Object Browser de-
scribed below.

Objects

5-8 GEOMETRY VIEWER SUBSYSTEM

• Objects can also have surface properties such as color, transparency, re-
flectivity, etc. A simple geometry in a .geom file has no properties. It may
have optional attributes such as vertex color, vertex transparency values,
and normals—a vector perpendicular to each plane used to calculate the
angle of reflection. These attributes are part of the geometry’s data struc-
ture. Properties, on the other hand, exist only in the way the Geometry
Viewer portrays an object. Object properties can be saved permanently in
.scr and/or .prop property files. The surface properties determine how the
object reflects light. By selecting various property combinations (Edit
Property in the Object submenu), you can make an object appear to be
made of different materials like metal or clay, or even semi-transparent
glass.

You can transform the Top level object, which carries all its child objects along
with it, within world coordinates. You can also transform individual objects
within the Top level object’s coordinate system.

Where Objects Appear in World Space

When you read an object into the Geometry Viewer with the Read Object
button, it will be placed into the Top level object’s coordinate system at its
true location and size. The object might be all or partially outside the current
view window. Pressing the Normalize button on the Geometry Viewer’s con-
trol panel will bring it immediately into the view window.

When an object enters the Geometry Viewer (geometry viewer module)
through a network from a mapper module such as arbitrary slicer, volume
bounds, or hedgehog, etc., one of two things may occur:

• As with Read Object, the object will be placed at its true location and size
within the Top level object’s XYZ coordinate system. On occasion, part or
all of the object may be outside the current view volume. (This is how, for
example, the arbitrary slicer module behaves.) You can always get the en-
tire object into the view volume by pressing the Normalize button.

• Some mapper modules elect to normalize an object within the view vol-
ume themselves. By making an additional call to the libgeom library, they
instruct the Geometry Viewer to "rescale and translate" the Top level ob-
ject’s coordinate system so that the object will fit within the display view-
port. If a mapper module makes this call, the object will appear centered in
the display window and filling it automatically. If you bring up the Trans-
formation Options panel (described below), and examine the Absolute
scale and translation of the Top level object and the mapper’s object, you
will see that the mapper object is at its real size and location in the Top
level object’s coordinate space, and that the Top level object has been re-
scaled and its coordinate axes shifted within world coordinates to accom-
modate the object in the view.
This approach has the advantage that you always immediately see all of
an object. On rare occasions, this advantage can be a disadvantage if you
are, for example, creating an animation. The scene in the display window

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-9

may jump each time a new geometry enters as the Top level coordinates
are normalized.
If multiple modules are sending output to the geometry viewer module,
and if any one of the modules makes this call, then all objects will appear
within the view volume. The volume bounds module makes this call, for
example, and will affect the output of arbitrary slicer even though arbi-
trary slicer does not make the call.

Note: In AVS 2, rectilinear and irregular data were mapped as described
above. Uniform data, however, was not. Uniform data objects were always re-
scaled and translated to fit within a cubic volume in the Top level object’s co-
ordinate system extending from -1, -1, -1 to 1, 1, 1. This is no longer the case.
Now uniform data lives in the space [0,0,0] to [maxX-1, maxY-1, maxZ-1].

Geometry Viewer Control Panel

Figure 5-5 shows the main Geometry Viewer control panel. Throughout the
control panel and its submenus, press any mouse button to select any of the
control buttons. The control panel is just another window on the screen. You
can use your window manager to move it around, or even partially off the
screen.

Top Control Bar

The three buttons at the top of the Geometry Viewer have the same meaning
as in other AVS subsystems. The Help button invokes the Help Panel, with a
selection of topics relevant to the Geometry Viewer. Data Viewers is a pop-up
menu that brings up the control panels of the other subsystems. Note that if
you use Data Viewers to switch to another subsystem, the Geometry View-
er’s control panel is not taken down from the screen, it is merely obscured by
the new control panel. You could use your window manager to move it to an-
other part of the screen and have multiple control panels showing at once.
Close unmaps the Geometry Viewer control panel from the screen. It does not
"exit" the Geometry Viewer.

Transform Selection Area

There are four transformables in the Geometry Viewer: objects, lights, camer-
as, and 2D texture maps. (Note: some hardware renderers do not support 2D
texture mapping and won’t display this menu entry. The software renderer
does support 2D texture mapping.)

The four Transform Selection menu buttons select which class of transform-
able (objects, lights, cameras, or 2D texture maps) is going to be affected by a
mouse button or Transformation Options panel selection. It is a transforma-
tion mode switch. (See Figure 5-6.)

Geometry Viewer Control Panel

5-10 GEOMETRY VIEWER SUBSYSTEM

 Figure 5-5 Geometry Viewer Control Panel

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-11

There are two main styles of transforming objects:

• Direct manipulation transformations performed with the workstation’s
mouse buttons in concert with the main keyboard’s Shift key. In this type
of transformation, you simply make the transformable the "current trans-
formable," then point at it with the mouse cursor, press the correct mouse
buttons, and "move" the object around the view window. This direct ma-
nipulation movement is highly interactive.

• Precise object transformations performed with the Transformation Op-
tions typein panel, or using the keyboard’s arrow keys. In this mode, you
also make the transformable the "current transformable," then you type in
to the Transformation Options panel the exact Absolute or Relative
movement you want the object to make.

The two interaction styles are quite different. We deal with each separately.

Note: Cameras can be transformed in yet a third way—with the Camera Op-
tions panel—using an intuitive "From" and "At" style that is suitable for ani-
mation. This is discussed in the "Cameras" section below.

 Figure 5-6 Transformation Selection Area

Geometry Viewer Control Panel

5-12 GEOMETRY VIEWER SUBSYSTEM

Mouse Transformations

Transforming Objects

To transform objects, click the Transform Object button (or, equivalently,
press function key F1 with the mouse cursor in the graphics window). (Trans-
form Object is the default.) This sets the mouse buttons to perform the fol-
lowing functions:

Left Mouse
Selects a particular object, making it the current object. The selected object
appears in the Current Object Indicator (the small window) in the control
panel. Repeated clicks on the same object move up the object hierarchy,
progressively expanding the selection. For example:

One click: Selects wing, part of one wing of the jet object.

Two clicks: Expands the selection to jet, the entire jet object.

Three clicks: Expands the selection to the entire Top level object, which
includes the jet and, perhaps, several other objects.

Four clicks: Having reached the Top level, returns to wing, as selected
with a single click.

Middle Mouse
A dragging action (holding down the middle mouse button, then moving
the mouse) rotates the current object in 3D space. The object behaves as if
it were attached to a virtual trackball (see Figure 5-7) whose center is at
the center of the view window. The mouse cursor is attached to the part of
the trackball that protrudes above the surface of the window.

This is the most common way to manipulate objects.

Middle Mouse with Ctrl key held down
Using the Ctrl key with the middle mouse button allows you to constrain
rotations to one of the major screen axes: X, Y, or Z. As you move the
mouse, the object will rotate around the axis with the largest degree of
change for that particular motion. Moving the cursor vertically in the cen-
ter of the screen will rotate around X, horizontally in the middle of the
screen rotates around Y. Strict Z rotations are difficult to achieve but can
be obtained with some practice. Use Ctrl-middle mouse button and move
the mouse cursor in a circle around the object.

Middle Mouse with SHIFT button held down
A dragging action scales the object: dragging downward or to the left
makes the object smaller; dragging upward or to the right makes the ob-
ject larger.

Right Mouse
A dragging action translates the selected object in the plane of the win-
dow (that is, moves the object left-right and/or up-down).

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-13

Right Mouse with SHIFT button held down
A dragging action translates the selected object perpendicular to the
plane of the window (that is, moves the object in-out). Dragging upward
or to the right moves the object away from your eye; dragging downward
or to the left moves the object toward your eye.

Eventually, this translation may cause the object to cross the front or back
clipping plane. This causes the object to (partially) disappear.

Note: You will not see the size of the object change when you transform
it in the Z plane unless you turn on Perspective under the Cameras
menu.

Right Mouse with Ctrl key held down
Using the Ctrl key with the right mouse button allows you to constrain
translations to one of the major screen axes: X or Y. The axis with the larg-
est change for a given motion will be the chosen axis. Horizontal motion
translates in X, vertical motion translates in Y.

If you release the mouse button while the mouse is still moving (a kind of
"flinging" motion), then the object will move continuously until you press any
mouse button in the display window. This is called track rolling.

Transforming Lights

To transform lights, click the Transform Light button (or, equivalently, press
function key F2). This sets the mouse buttons to perform the following func-
tions:

Left Mouse
Still selects the current object. This button always selects objects, no matter
what the Transform Selection is. To select the current light, click one of the

Initial Object Position New Object Position

cursor

AVS window AVS object virtual trackball

 Figure 5-7 Rotating an Object with the Virtual Trackball

Geometry Viewer Control Panel

5-14 GEOMETRY VIEWER SUBSYSTEM

numbered boxes in the lighting panel (which appears when the Menu Se-
lection is Lights).

Middle Mouse
A dragging action rotates the position (point light) or direction (direction-
al light) of the current light using the "trackball" paradigm (see above).

Middle Mouse with Ctrl key held down
Constrains light rotations to the X, Y, or Z axis.

Middle Mouse with SHIFT button held down
Scales the Show Lights representation of the light source. For point and
spot lights, this also translates the light source itself.

Right Mouse
A dragging action translates the selected light in the plane of the window.
With (bi-)directional lights, this changes the position of the symbol that
represents the light source (Show Lights), but has no effect on the light
source itself.

Right Mouse with SHIFT button held down
(Applies to point and spot lights only) A dragging action translates the
selected light perpendicular to the plane of the window.

If the scene is not drawn in perspective (see "Cameras" section below),
this will have no effect.

Right Mouse with Ctrl key held down
Constrains light translations to one of the major screen axes: X or Y. The
axis with the largest change for a given motion will be the chosen axis.
Horizontal motion translates in X, vertical motion translates in Y.

Transforming Cameras

To transform cameras, click the Transform Camera button (or, equivalently,
press function key F3). This sets the mouse buttons to perform the following
functions:

Left Mouse
Still selects the current object. This button always selects objects, no matter
what the Transform Selection is. To select the current camera (view), just
click in the desired window. The current camera window will be sur-
rounded with a red border.

Middle Mouse
A dragging action rotates the position of the current camera (the camera
in the current window) using the "trackball" paradigm (see above).

Note that the object seems to rotate, rather than the camera.

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-15

Middle Mouse with SHIFT button held down
Scales the 3D view volume for the camera. Only objects within this view
volume appear in the window.

Middle Mouse with Ctrl key held down
Constrains camera rotations to the X, Y, or Z axis.

Right Mouse
A dragging action translates the camera in the plane of the window.

Right Mouse with SHIFT button held down
Translates the camera perpendicular to the plane of the window. If the
scene is not drawn in perspective, this will have no effect.

Right Mouse with Ctrl key held down
Constrains camera translations to one of the major screen axes: X or Y.
The axis with the largest change for a given motion will be the chosen
axis. Horizontal motion translates in X, vertical motion translates in Y.

The Transform Camera button has a "dimple." Pressing this dimple brings
up the Camera Options panel. The Camera Options panel provides fine-
grained control over the way that a camera portrays a scene including the
camera’s position, the direction it is viewing, the degree of perspective ap-
plied to the scene, depth cueing, and the position of clipping planes. The
Camera Options panel is described in detail later in this chapter under the
"Cameras" section.

Transforming Texture Maps

To transform the way that an image is texture-mapped to the surface of an ob-
ject, click the Transform Map button (or, equivalently, press function key F4).
(This selection only appears on systems with support for 2D and/or 3D tex-
ture mapping.) This sets the mouse buttons to perform the following func-
tions:

Left Mouse
Still selects the current object. This button always selects objects, no matter
what the Transform Selection is.

Middle Mouse
A dragging action rotates the position of the current texture (the texture-
map image, if any, that is associated with the current object). using the
"trackball" paradigm (see above).

Middle Mouse with SHIFT button held down
Scales the texture map.

Middle Mouse with Ctrl key held down
Constrains texture map rotations to the X, Y, or Z axis.

Geometry Viewer Control Panel

5-16 GEOMETRY VIEWER SUBSYSTEM

Right Mouse
A dragging action translates the texture map in the plane of the window.

Right Mouse with SHIFT button held down
Translates the texture map perpendicular to the plane of the window.

Right Mouse with Ctrl key held down
Constrains texture map translations to one of the major screen axes: X or
Y. The axis with the largest change for a given motion will be the chosen
axis. Horizontal motion translates in X, vertical motion translates in Y.

Transforming Labels

Labels are objects. For this reason, there is no Transform Label button on the
Transformation Selection menu. See "Transforming Objects" above.

Precise Transformations

The Transform Selection menu bar has a "dimple." Clicking on this dimple
produces the Transformation Options panel (Figure 5-8).

The Transformation Options Panel allows you to transform objects, hierar-
chies of objects, lights, and cameras by precise values typed in to the Trans-

 Figure 5-8 Tranformation Options Panel

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-17

formation Options panel. The movements can be relative to the current
position, or to an absolute position.

Degree of Rotation: Arrow Keys

You can rotate objects, hierarchies of objects, lights, and the camera with the
keyboard’s arrow keys. The degree of rotation is set with the typein at the top
of the Transformation Options panel. The default is 45.0 degrees. The mini-
mum is 0.0 degrees and the maximum is 360.0 degrees. Change the default
value by moving the mouse cursor into the typein area and type a new value.
As with all typeins, Ctrl-U deletes the entire line, and Backspace deletes the
previous character. You do not have to press Enter for the new value to take
effect. (However, you do have to move the mouse cursor into the display win-
dow before the arrow keys work.)

Left and Right Arrow Keys
The left and right arrow keys rotate the current transformable about its Y
axis.

Up and Down Arrow Keys
The up and down arrow keys rotate the current transformable about its X
axis.

Shift Left and Right Arrow Keys
Pressing the Shift key together with the left and right arrow keys rotates
the current transformable about its Z axis.

Note: If your window manager has appropriated the arrow keys for its own
purposes, the functions just described may not work.

Transformation Options panel typeins do not have to be finished with the En-
ter key. Moving the mouse cursor out of the typein window will cause the
transformation to occur. Repeatedly pressing the Enter key repeatedly applies
the transformation.

Absolute and Relative

These two switches select between transforming the current transformable
Relative to its current position or state, or to an Absolute position or state.
The default is Relative.

Absolute sets the object’s transformation matrix to be specifIed values. Rela-
tive appends the object’s transformation matrix with the values specified.

When an object is selected:

• Translate happens with respect to the object’s parent coordinate system,
not within its own coordinate system. With individual objects this usually
means, translate the object in the Top level object’s coordinate system. For
the Top level object, it means translate the Top level object within the
world coordinate system.

Geometry Viewer Control Panel

5-18 GEOMETRY VIEWER SUBSYSTEM

• Rotate. Objects are rotated with respect to their center point, in their own
coordinate system. Thus, if the Top level object’s Z axis is sticking straight
out of the screen, and the object’s Z axis is pointing up, the object will ro-
tate around the Z axis that is pointing up. Rotations also happen in a par-
ticular order, first X, then Y, then Z. The rotation transformation is not
transitive.

• Scale. Objects are scaled in their own coordinate system with respect to
their center point. Thus, if you scale an object to be twice its original size,
then select the Top level object and scale it to be twice its original size,
both believe they are twice their original size. The object does not think it
is four times its original size, although that is how it appears.

• Scale/Rotate Center. This defines the center point for the object. Objects
are rotated and scaled with respect to their center point. The center point
of an object is within its own coordinate system, not that of its parent.

Absolute
When you first toggle Absolute, it reports the current state of the current
transformable: where the object is, how it is rotated, scaled, and where its
center is (Figure 5-9).You can then type in new values for all these cells,
except Rotate. You cannot do absolute rotations.

Note: The Absolute display of the Transformation Options panel is not
updated automatically if you perform a transformation with the mouse
or arrow keys, or if you change the current transformable. To see the

 Figure 5-9 Absolute Transformation Values

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-19

new absolute position, click on Relative then back to Absolute and the
new information will be displayed.

On occasion you may see the string "Not Avail" instead of the absolute
positions. It is possible for an object to get into a state where the equations
that calculate its position, rotation, and scale are undefined (not avail-
able). This might occur, for example, if you rescaled an object in the X di-
rection, but not in any other.

The meaning of the Absolute values for cameras are not intuitive. They
are not "where the camera is in space and how big it is." Rather, Scale
shows how much world coordinate space had to be scaled down to fit
into the camera’s view volume, and Translate shows how much it had to
be shifted over. The Camera Options panel provides a more intuitive in-
terface for camera transformations.

Relative
Relative repositions or rescales the current transformable as a delta value
from its current location or scale. You can type in either positive or nega-
tive values.

Override

Override disables a module’s control over the current object. Some objects in
the Geometry Viewer such as the slice planes of the arbitrary slicer module,
the volume bounds object and isosurface objects, and the probes of the probe
and hedgehog modules, are being controlled by the module that produces
them, not by the Geometry Viewer, through the invisible "upstream data" con-
nection described in the "Advanced Network Editor" chapter. Switching on
Override for the current object overrides the module’s control of the object.

Bounding Box

Switching on Bounding Box makes transformations (rotate, translate, scale)
performed with the mouse behave differently.

 Figure 5-10 Bounding Box Button

Geometry Viewer Control Panel

5-20 GEOMETRY VIEWER SUBSYSTEM

Normally, when you transform an object with the mouse, the system does its
best to update the rendering of the object continuously, in "real time" as it
tracks the mouse. So, as you rotate a teapot through an arc from A to E, the
system tries to keep the picture "live." In practice, what you get are several in-
termediate views B, C, D as the teapot rotates from A to E. The more horse-
power your system has, the smoother and more continuous the rendering.
The more complex the scene is (objects with many surfaces, lights), the slower
the rendering.

Bounding Box disables this resource-expensive effort at real time rendering.
With Bounding Box turned on, when you place the mouse over the current
transformable and press the middle or right button, a white wireframe box
enclosing the volume of the object appears. (If the current transformable is a
light, the lines representing the light change color.) As you move the mouse,
the bounding wireframe box moves—the object does not. You move the bound-
ing box to the destination position/rotation/scale, then let go of the mouse
button. Only then is the object rendered at its new location/scale. It started at
A, it ended at E, and positions A and E were all you saw— there were no B, C,
D intermediate renderings of the object.

Bounding Box is particularly useful if you are running AVS on a compara-
tively low performance graphics system, when you are using the software
renderer, or as a remote X client from an "X terminal" or workstation. It will
make the interaction much faster, if less animated. It is also useful on faster
systems trying to render very complex objects. The interaction may be further
speeded by using Bounding Box in concert with Freeze Camera. Perfor-
mance aside, some people like bounding box because the box gives them a
more accurate image of the object’s orientation in space.

Toggling Bounding Box affects all view windows on the screen.

There is a bounding box for the Top object and all objects in the scene.

You can have Bounding Box turned on by default for all your AVS sessions.
In your .avsrc or .avsrc.X file, add the following line:

BoundingBox 1

Current Object Area

Current Object Indicator

This small window (Figure 5-11) shows a miniature graphical representation
of the current object. Clicking any mouse button repeatedly in the Current
Object Indicator window cycles through the list of objects for the current
scene.

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-21

Current Object Browser

The Current Object Namebar shows the name of the current object. Clicking
on this dimple produces the Current Object Browser (Figure 5-12). This is an
alternate way to select the current object. It is intended primarily for the cases,
such as the sample file geometry/jet.geom, where there are too many objects in a
single level hierarchy for it to be reasonable to select them by clicking on them
in the display window, or to cycle through them in the miniature current Ob-
ject Indicator window.

It also supports current object selection in multi-level object hierarchies.

 Figure 5-11 Current Object Selection Area

 Figure 5-12 Current Object Browser

Geometry Viewer Control Panel

5-22 GEOMETRY VIEWER SUBSYSTEM

The names of the objects appear in a browser window very like the file brows-
er widget. The current object is highlighted. Clicking any mouse button on
any object name will make it the current object.

Renaming Objects with the Current Object Browser

The Current Object Browser has an Edit Name button at the bottom of its
panel. Pressing this button brings up a typein panel that lets you name the
current object. Note that object names are case-sensitive.

When you first read in an object, it comes with a name that appears in the
Current Object namebar. This name was set by the program that created the
geom object. By convention, modules name objects after themselves. The Ge-
ometry Viewer appends a sequence number to the object name, name.n. This
is to distinguish between two objects from two modules with the same name,
e.g. two arbitrary slicers.

There is a good reason to rename objects. The issue arises when you are using
AVS modules that produce geometries and you are just using the Geometry
Viewer to examine the results. As the AVS module produces successive geom-
etries, it repeatedly gives them the same name and the Geometry Viewer
gives them the same sequence. Each new geometry replaces its predecessor.
You will not be able to deal with these geometries as separate objects unless
you rename them.

For example, you might be using the arbitrary slicer module in the Network
Editor to cut several slices at different angles through a 3D volume of data,
(perhaps a density image of a cranium) and display them composited togeth-
er.

To create the composite slices, you would position the slice plane at the first
desired angle, then "freeze" it by using the renaming option, creating a new
object. Move the slice plane to the second desired angle, freeze it by renaming
it, and so on until the whole composite picture has been constructed.

Additional Transformations

Just below the Current Object Indicator are three additional buttons:

Reset
Restores the current transformable (object, light, or camera) to its original
position when it first entered the Geometry Viewer. Reset maintains the
color, surface properties, center point, and rendering mode of the object.

Normalize
Scales the current object so that it fills its view window.

Center
The Center button does not center an object within the display viewport.
Rather, along with the Scale/Rot. Center typeins on the Transformation

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-23

Options panel, it allows you to control the center of rotation and scaling
of individual objects and the entire Top level hierarchy of objects.

When an object or a collection of objects within a hierarchy (usually Top)
is rotated (middle mouse button) or scaled (shift middle mouse button), it
is always rotated or scaled about its center.

Center can be in one of four places:

• The libgeom library that modules use to create objects contains calls
that allow a programmer to define an explicit center for the object. If
the programmer defined an explicit center for the object, then that is
where its center will be.
The visual clue that an object or object hierarchy’s center point is not
its origin is that when you rotate the object with the middle mouse
button, it does not rotate about what appears to be its physical center,
but about some other point in space. This point may even be outside
the physical bounds (extent) of the object.

• The center is at 0, 0, 0 in an object’s own coordinate system unless the
programmer defined an explicit center for the object as noted above.

• Whichever of the previous two cases was true, pressing the new Cen-
ter button recalculates the center point for an object or a hierarchy of
objects, overriding the previous setting.
For individual objects, the center becomes:

center X coord = ((max X extent - min X extent)/2) + min X extent
center Y coord = ((max Y extent - min Y extent)/2) + min Y extent
center Z coord = ((max Z extent - min Z extent)/2) + min Z extent

For collections of objects in hierarchies, the center point is calculated
the same way, but using the minimum and maximum X, Y, and Z val-
ues of the smallest rectangular volume enclosing all of the objects
within the hierarchy.

• Center can be set to any point in the object’s coordinate system that is
typed into the Transformation Options panel.

Reset by itself does not reset the center point of objects or hierarchies of ob-
jects. You can keep track of centers and reset them "manually" using the Scale/
Rot. Center typein on the Transformation Options panel described above.

Function Key Usage

The choices in the Transform Selection areas can be made by pressing func-
tion keys instead of using the mouse. This can save you the "overhead" of
moving the mouse cursor back and forth between the view window and the
Transform Selection Area. The mouse cursor must be inside the view window.

F1
Selects Transform Object, "attaching" the mouse to the (composite) object
shown in the Current Object Indicator window.

Geometry Viewer Control Panel

5-24 GEOMETRY VIEWER SUBSYSTEM

F2
Selects Transform Light, "attaching" the mouse to the current light, as in-
dicated on the lighting panel under the Lights menu selection.

F3
Selects Transform Camera, "attaching" the mouse to the camera in the
current window. If you move to a different window, the mouse automati-
cally switches to the camera in that window.

F4
Selects Transform Map, "attaching" the mouse to the grid that shows how
the current texture is aligned with its object.

F5
Toggles the state of the Bounding Box button.

F6
Cycles the current object, as shown in the Current Object Indicator win-
dow. This is the same as clicking the mouse in the Current Object Indica-
tor window.

F7
Performs a Reset, returning the current object, light, or camera to its orig-
inal position and orientation.

F8
Performs a Normalize, resizing and positioning the current object so that
it fills the current window.

F9
Performs a Center, changing the center of rotation of the current object to
be in the center of its extent.

Note: If your window manager has appropriated the arrow or function keys
for its own purposes, the functions just described may not work. If this is the
case, you can hold down the Shift key in combination with the function or ar-
row key to get the key to work for AVS.

Dial Box Usage

Figure 5-13 shows how the dialbox can be used as an alternative to the mouse
for moving objects, lights, and cameras. To enable the dial box, use the -dials
devicespec option on the AVS command line.

Spaceball Usage

To enable the spaceball, use the -spaceball devicespec option on the AVS com-
mand line. The spaceball should beep as AVS starts up.

Geometry Viewer Control Panel

GEOMETRY VIEWER SUBSYSTEM 5-25

The spaceball transforms an object, light, or camera as follows:

• Pulling up on the ball translates the object upward; pushing down trans-
lates the object downward.

• Pulling to the left or right on the ball translates the object accordingly.
• Twists in various directions produce rotations.
• Pulling the ball towards you makes the object larger; pushing the ball

away scales the object down.

The spaceball’s buttons have the following definitions:

Button 1
Allow/disallow translation portion of transformation. A short beep is
sounded.

Button 2
Allow/disallow rotation portion of transformation. A short beep is
sounded.

Button 3
Allow/disallow scale portion of transformation. A short beep is sounded.

Button 4
Unused.

Button 5
Decrease sensitivity of translate/zoom by factor of two. A beep is sound-
ed.

Button 6
Increase sensitivity of translate/zoom by factor of two. Two short beeps
are sounded.

Button 7
Reset sensitivity to initial settings. A short beep is sounded.

Button 8
Generate or stop drift.

rotate around
X-axis

Y-axis

Z-axis

scale
uniformly

translate along

rotate around

rotate around

X-axis

Y-axis

Z-axis

translate along

translate along

not used

 Figure 5-13 Dialbox Usage

Geometry Viewer Menu Reference

5-26 GEOMETRY VIEWER SUBSYSTEM

Occasionally, you may lose the object of interest outside the view window.
When this occurs, press the spaceball’s button to reset the transformation ma-
trix to its initial value.

Geometry Viewer Menu Reference

The Geometry Viewer control panel provides access to most functions for cre-
ating 3D "scenes", including a combination of objects, lights, and cameras.
The Menu Selection area also provides functions for moving data between
disk storage and Geometry Viewer windows.

The following top level menu choices are always visible in the Menu Selection
area:

Objects
Lights
Cameras
Labels
Action

One of these choices is selected at any particular moment. For instance, when
you start the Geometry Viewer, Objects is selected automatically. The area be-
low this top level menu changes, depending on which choice is currently se-
lected.

Objects

Selecting Objects causes the Menu Selection area to appear (Figure 5-14).

Read Object

This function allows you to retrieve one or more objects from disk files, plac-
ing them in the current window. As you select each object, it becomes the cur-
rent object, as shown by the Current Object Indicator in the upper part of the
control panel.

When you select Read Object, a small window (the File Browser) filled with
filenames from the current directory appears near the control panel. See Fig-
ure 5-15.

The File Browser is "sticky" — it remains onscreen until you explicitly remove
it by clicking on Close. This makes it convenient to retrieve multiple objects
consecutively. You can also cancel Read Object by clicking on Close before
you’ve read any objects at all.

The entries on the File Browser are color-coded: black entries are files that
contain Geometry Viewer objects; red entries are subdirectories (the topmost

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-27

red entry is the parent directory). To select one of the entries, click on it with
any mouse button.

Since a directory might contain a large number of entries, the File Browser has
a scroll bar along its right edge. Clicking inside the scroll bar makes addition-
al entries appear:

 Figure 5-14 Objects Menu Selections

Geometry Viewer Menu Reference

5-28 GEOMETRY VIEWER SUBSYSTEM

• The left mouse button scrolls upward.
• The effect of the middle button depends on exactly where the cursor is:

In the arrow box at the top. Click to scroll the list to the very top.
In the elevator shaft. Click and hold down the button to grab the elevator
bar. Moving the bar up or down causes the list to scroll accordingly.
In the arrow box at the bottom. Click to scroll the list to the very bottom.

• The right mouse button scrolls downward.

Selecting an object adds it to the current window. You can then use the mouse
to move, rotate, and resize the object.

Selecting one of the red (directory) entries changes the working directory. The
names of the Geometry Viewer object files in that directory are displayed,
along with the names of any subdirectories.

You can also change the working directory by clicking on New Dir at the bot-
tom of the File Browser. A window pops up so that you can type the name of
another directory (Figure 5-16). (If you change your mind, click Cancel with
the mouse.) Be sure the mouse cursor is in the one-line text-entry area before
you start typing the directory name.

 Figure 5-15 The File Browser

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-29

Similarly, you can click the New File button to enter the full or partial path-
name of a file. Be sure to include the filename extension.

When typing a filename or directory name, you can use the Backspace key to
erase the last character. Pressing Ctrl-U erases the entire line you’ve typed.

You can type a full pathname (starting with /) or a pathname relative to the
current directory. the name of the current directory is displayed above the
text-entry area. For instance, to go two levels up the directory hierarchy, you
would enter ../.. as the new directory.

To finish entering the new directory name, press the Enter key or click OK
with the mouse.

Save Object

This function saves the current object (shown by the Current Object Indicator)
in a .scr file using the Geometry Viewer CLI commands. This can be a compos-
ite object, consisting of two or more of the simple objects defined in .geom files.
Any properties you have assigned with the Edit Property window are also
saved, as are the rendering method(s) for the simple object(s).

If the object’s geometry has been modified either by a module or by the geom-
etry viewer user interface since the object was last saved, the Save Object
function will also create a .geom file that defines the geometry of the object. In
this case, you will need to enter two filenames, one for the .geom file and one
for the .scr file. Be sure to read the prompt on the dialog box as it will indicate
which file you are saving.

Note: You must use Save Scene to save exactly what you see in a view win-
dow. Using Save Object saves just the object, its properties, and the position
and orientation of the object in space. It does not save light or camera posi-
tions.)

Note: The .scr file contains references to one or more .geom files. That is, the
.scr file does not contain copies of geometries, but merely contains pointers to
them. For this reason, be careful not to disturb .geom files that store the "build-
ing blocks" for your objects.

 Figure 5-16 Entering a Fileneme

Geometry Viewer Menu Reference

5-30 GEOMETRY VIEWER SUBSYSTEM

You don’t need to type the .scr extension when you enter a filename—AVS
adds this extension automatically (unless you type it yourself). To finish en-
tering the filename, press the Enter key or click OK with the mouse.

Click on Cancel to cancel the save operation.

After you’ve saved an object, its filename appears in the File Browser. You can
later bring the object back into the same window, or a different one, using
Read Object.

Delete Object

This function removes the current object (shown by the Current Object Indica-
tor) from the current window. It also removes the object from all other win-
dows that show the same scene.

Since there is no way to "undo" deleting an object, you may want to perform a
Save Object before deleting something that might be useful later on.

Edit Property

This function allows you to change the reflectance properties of the current
object. The way in which an object in the real world reflects light depends on
the characteristics of its surface: color, material (e.g. plastic, metal, fabric),
smoothness, etc. From an intuitive point of view, then, this function allows
you to specify the material from which the object is constructed.

Note: Some properties, such as transparency, require special graphics hard-
ware/software support that may not be present on your platform’s hardware
renderer. In this case, switch to the software renderer under the Cameras
menu.

When you select Edit Property, a window appears next to the control panel.
The Edit Property window contains sliders that control the various surface
properties (Figure 5-17).

When the window first appears, the sliders show the current settings for the
current object. As you move the sliders, the image of the object changes as
soon as you release the mouse button.

Note: You can move a slider with any mouse button. You can either drag a
slider by holding down the mouse button, or just click once at the spot where
you’d like the slider to move.

Like the File Browser, the Edit Property window is "sticky" — it remains on-
screen until you explicitly remove it by clicking on Close. This makes it con-
venient to change several properties of an object, or to change the properties
of several different objects.

The sliders in the Edit Property window are as follows:

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-31

RGB Color
The top three sliders control the object’s color by adjusting the amount of
red, green, and blue. To make an object white, move all three sliders all
the way to the right. To make an object black, move all three sliders all the
way to the left.

HSV Color
The next three sliders provide an alternative way to specify the object’s
color: hue-saturation-value.

The hue, saturation and brightness (HSB) color space can be thought of as
an inverted cone:

• The hue axis runs circularly around the cone. Example hue values
and corresponding hues are given below:

0.00 = red
0.16 = yellow

 Figure 5-17 The Edit Property Window

Geometry Viewer Menu Reference

5-32 GEOMETRY VIEWER SUBSYSTEM

0.33 = green
0.50 = cyan
0.66 = blue
0.83 = magenta

• The saturation axis runs from the center of the cone (white) to its pe-
rimeter (fully saturated color). Example saturation values are:

0.00 = white
0.50 = partially saturated hue
1.00 = fully saturated hue

• The brightness axis runs from the tip of the cone (black) to the base
(white). Example brightness values are:

0.00 = black
0.50 = partially darkened hue
1.00 = full intensity hue

Note that the RGB slider set and the HSV slider set provide two ways
of controlling the same property — the object’s surface color. When-
ever you make an RGB change, the HSV sliders automatically adjust
to reflect the change, and vice-versa.

Ambient Light Reflectance
The proportion of the available ambient light that the object reflects. Am-
bient light is non-directional, affecting all parts of all surfaces equally.

 Figure 5-18 Teapot with Metallic Surface and Specular Highlights

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-33

This setting determines how much ambient light the object reflects. To
control what ambient light there is in the scene, select the AM light on the
lighting panel. This is described under the top level menu choice Lights.

Diffuse Light Reflectance
The proportion of the available non-ambient light that the object reflects
equally in all directions. Non-ambient light emanates from directional
and point light sources, which you specify with the lighting panel.

This setting is used in the calculations for Flat, Gouraud, and Phong shad-
ing.

Specular Highlight Intensity/Gloss/Metal
Specular highlights of a particular color and brightness are created when
the direction of incoming light (from a directional or point light source) is
"sufficiently close" to the viewing direction.

The Intensity determines the brightness of such highlights. It corre-
sponds to the specular coefficient in the lighting calculations.

The Gloss setting determines what "sufficiently close" means. The greater
the sharpness, the smaller (more focused) the size of the specular high-
light. This setting corresponds to the specular exponent in the lighting
calculations.

The Metal setting specifies the color of the specular highlight. AVS con-
strains the color to be somewhere between the color of the light source
(leftmost) and the color of the object (rightmost).

Transparency
This setting controls the degree to which you can see through the front of
an object, allowing you to see the back of the object and other objects be-
hind it.

The Edit Property window also contains these buttons:

• The Save and Read buttons enable you to maintain a library of properties
settings on disk. Each time you Save, AVS creates a file containing the
current settings of all the sliders. It prompts you to enter a filename, and
automatically adds the filename extension .prop to the name you enter. Be
sure the mouse cursor is in the one-line text-entry area before you start
typing the filename. There are a wide variety of sample properties in the
default directory.

• The Inherit button replaces the current slider settings with those of the
parent of the current object. The current settings are not lost, however. To
Srestore them, just click on Inherit again. For longer-term storage of
properties settings, use the Save and Read buttons.

Edit Texture

Note: Not all platforms’ hardware renderers support 2D and/or 3D texture
mapping. The supposedly texture-mapped objects will appear a featureless
white. To get texture mapping, switch to the software renderer under the
Cameras submenu.

Geometry Viewer Menu Reference

5-34 GEOMETRY VIEWER SUBSYSTEM

2D texture mapping is the mapping of a two-dimensional image to the surfac-
es of three-dimensional geometry. The process begins with a pixmap contain-
ing the two-dimensional image (the texture) and a geometry object to which

 Figure 5-19 Teapot with Clay Surface

 Figure 5-20 Teapot with Semi-Transparent Surface

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-35

the image is to be mapped. Each vertex of the object is associated with a point
in the texture. When the object is rendered, that point in the texture appears
on the surface of the object at the associated vertex. AVS uses the underlying
graphics subsystem to map the remainder of the texture to the object surface
by means of linear interpolation between vertices.

Note: The texture to geometry mapping can also be defined with libgeom calls
that provide explicit UV(W) coordinates. Otherwise, the Geometry Viewer’s
interactive technique described below can be used.

 Figure 5-21 Edit Texture Panel

Geometry Viewer Menu Reference

5-36 GEOMETRY VIEWER SUBSYSTEM

Steps in Using AVS Texture Mapping

Here’s a procedure for doing 2D texture mapping:

1. Choose an object to which the texture is to be applied. Make that
object the current object by clicking on it with the left mouse but-
ton.

2. In the Object menu, click on Edit Texture to bring up a window of
choices.

3. Decide which texture mapping method you want to use: sphere
mapping or plane mapping. Click the choice you want if it is not al-
ready selected.
In sphere mapping, the object’s vertices are projected onto a sphere,
and the texture is effectively wrapped onto the same sphere. The
width of the texture is spread along the equator; the top and bottom
of the texture are compressed at the two poles.
In plane mapping, the object’s vertices are projected onto a plane
that effectively contains the texture.

4. Click on Set UV Mapping to have AVS establish the mapping be-
tween the object’s vertices and the texture. Whenever you change
the mapping type or you transform the texture map (e.g. rotate it),
you must click this button again to update the mapping. AVS does
this automatically if you try to apply a texture to an object that does
not have UV mapping information.

5. Specify a filename using the File Browser. You can use only image
files in the AVS image format, which have the filename extension .x.

This procedure causes the texture to appear on the object. Whenever you
transform the object (translate, rotate, scale), the texture transforms accord-

 Figure 5-22 Teapot Texture-Mapped with marble.x

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-37

ingly. You can also transform the texture mapping itself (e.g. change the orien-
tation of the plane onto which the object’s vertices are projected). To do so,
select Transform Map in the Geometry Viewer control panel at the left edge
of the screen, and use the mouse to transform the map. After you transform
the map, click Set UV Mapping again to update the mapping of the object’s
vertices to the texture.

For more on object and texture transformations, see "Transformations and the
Transform Selection Area" above.

The Dynamic Texture

The Set Dynamic Texture button is for use when the Geometry Viewer is in-
cluded in an AVS network, as the geometry viewer module. This module
takes an image as an optional input through its multi-colored field input port.
Clicking Set Dynamic Texture causes this image to be selected as the texture
to be mapped to the current object. This same input port is used to perform
3D texture mapping (e.g., as used by the brick module).

There are several different options for performing texture mapping. Not all
will be available or meaningful on each platform.

Filter Texture
Anti-aliases the texture by resampling to remove artifacts that occur
when the "pixels" of the texture map have become obvious due to expan-
sion or shrinkage.

Tile Texture
When uv(w) values exceed the 0-1 range, different renderers produce dif-
ferent visual artifacts. On some renderers, values outside the range are
clamped to 0 or 1, producing a smear at the edge of the image that contin-
ues to infinity. With the software renderer, values outside 0 to 1 are not
texture mapped at all. With Tile Texture turned on, values outside 0 to 1
are wrapped, thus continuing the texture map without obvious visual ar-
tifacts.

Alpha Texture
Use the alpha value in the texture pixel to control transparency. The soft-
ware renderer supports this option. The volume render module makes
use of this option.

Volume Render
The volume render module uses this texture mapping option. It causes
the geometry viewer module to treat the 3D texture map entering its left-
most input port as data for volume rendering.

Object Info

Clicking this button displays a window of information pertaining to the cur-
rent object:

• The object’s Geometry Viewer name

Geometry Viewer Menu Reference

5-38 GEOMETRY VIEWER SUBSYSTEM

• Number of child objects
• Number of triangles in the object
• Number of lines in the object
• Number of triangle strips in the object
• Number of polylines in the object
• Number of disjoint lines in the object
• Number of spheres in the object
• Additional object data: vertex normals, vertex colors

Show Object/Hide Object

The functions cause the current object to disappear from the current window
(Hide) or reappear there (Show). The object also disappears or reappears in all
other windows that show the same scene.

A hidden object is still part of its scene. If you perform a Save Scene (de-
scribed under Cameras), the hidden object is saved along with all the visible
ones. You can later perform a Read Scene followed by a Show Object to
bring the object back onscreen.

The following menu items change the rendering method used to draw the
current object.

Points

The object is drawn as a set of points in space, one for each vertex. This fea-
ture is renderer-dependent.

 Figure 5-23 Slice Plane Object Hidden

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-39

Lines

The object is drawn as a wire-frame, using non-anti-aliased lines. (Not all ob-
jects have wire-frame representations.)

 Figure 5-24 Teapot Rendered as Smooth Lines

 Figure 5-25 Teapot Rendered with Flat Shading

Geometry Viewer Menu Reference

5-40 GEOMETRY VIEWER SUBSYSTEM

Smooth Lines

The object is drawn as a wire-frame, using anti-aliased lines. (This feature is
renderer-dependent.) See Figure 5-24.

No Lighting

The object is drawn using filled polygons, using no lighting or shading at all.
The only color (or colors) used is the color of the object itself.

Flat Shading

The object is flat shaded. See Figure 5-25.

Gouraud Shading

The object is drawn using Gouraud shading. Gouraud shading blends the col-
ors of a polygon’s vertices across the polygon face, simulating smooth shad-
ing. (This feature is renderer-dependent. The software renderer supports
Gouraud shading.)

Outline Gouraud

Outline Gouraud shows an object rendered with Gouraud shading, with the
lines of its polygon representation superimposed over it. This allows you to
see both the object’s actual polygon structure and its shaded representation at
the same time. (This feature is renderer-dependent. The software renderer
supports Outline Gouraud.)

Phong Shading

The object is drawn using Phong shading. This produces a more realistic ren-
dering than either Flat or Gouraud shading. (Phong shading is renderer-de-
pendent.)

Inherit

Causes the current object to inherit the rendering mode of its parent object.
Clicking again restores the previous explicit setting of the rendering mode.

Backface Properties

The Backface Properties button controls the way in which polygons that are
facing away from the viewer are drawn. The direction in which a polygon is
facing is determined by the order of its vertices or the direction of its vertex
normals. If an object is completely enclosed, like the example file dodec.geom,
you can "cull" away the back-facing polygons without seeing any changes in
the image.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-41

Press and hold down the mouse on this button and you will see a pop-up
menu that contains several choices for the backface properties. The current
backface property will be highlighted. Release the mouse button over one of
the choices to select it for the current object.

Different renderers will support different culling options.

Normal
This mode causes the object’s backfaces to be drawn in the normal back-
face mode for the specific renderer. Some renderers "flip the normals"
when a polygon is backfacing so that the backside of the polygon is lit in
the same way as the front face. Other renderers light the backface of the
polygon with the ambient intensity as the normal rendering mode.

Cull Back
This backface mode causes the render to not draw polygons that are back-
facing.

Cull Front
Some renderers support this rendering mode in which front faces are not
drawn. This mode is of limited utility and is only useful when the render-
er does not accurately determine front versus backfacing polygons.

Flip Normals
Some renderers support both the mode where backfacing polygons are lit
and the mode where backfacing polygons are colored with only the ambi-
ent intensity. If this is the case, the normal mode will be where backfacing
polygons are lit with ambient intensity. In this case, the GEOM_BACK-
FACE_FLIP mode can be used to cause the normals to be flipped and the
backfacing polygons to be lit like front faces. Using bi-directional light
sources is a partial workaround for systems that do not support the
GEOM_BACKFACE_FLIP rendering attribute.

Inherit
This mode causes the specified object to inherit the backface property of
its parent object. This is the default backface property for a newly created
object.

Subdivision

Spheres can be rendered in two ways:

• If your hardware has support for sphere rendering, then spheres will be
rendered as true spheres. All the hardware requires is a centerpoint and a
radius to make a spherical object appear in the output window. The soft-
ware renderer emmulates true sphere rendering.

• Without hardware sphere rendering, spheres are rendered by approxi-
mating them with some number of polygons.

Even when there is support for true sphere rendering, it can be disabled by
toggling Polygonal Spheres under the Cameras submenu.

Geometry Viewer Menu Reference

5-42 GEOMETRY VIEWER SUBSYSTEM

The Subdivision slider bar controls how many polygons are used to render a
sphere. It takes many polygons to produce a picture that looks like a smooth
sphere. On systems without software/hardware support for sphere render-
ing, spheres can be slow to render. The problem is aggravated if you are using
a bubbleviz/scatter dots network or a ball-and-stick representation of a com-
plex molecule that produces many spheres. A low Subdivision value such as
1 produces an 8-polygon diamond instead of a sphere, which renders more
quickly.

The Subdivision control has no effect when true sphere rendering is present
and Polygonal Spheres is not selected under the Cameras submenu.

Inherit

Inherit controls whether an object will inherit the Subdivision property of its
parent object. It is ON by default.

Lights

Selecting Lights causes the Menu Selection area to appear (Figure 5-26).

The grid of numbers in the figure is a "lighting panel". The number of lights
available is renderer-specific, but is usually either 16 or 8. The figure shows 16
lights, and that will be the assumption used in the rest of this section.

In any scene, you can define up to 15 directional or point lights. In addition,
you can specify the ambient light, indicated by AM on the lighting panel.

The original window of every scene is created with the following initial lights:

• World space is flooded with a uniform, non-directional ambient white
light. The ambient light source ensures that an object will always be visi-
ble even if other lights are not illuminating its surfaces. You can turn am-
bient light off for very dramatic lighting effects.
The ambient light has no location. When deciding how to portray an ob-
ject as lit, the value of the ambient light source is always added to the oth-
er factors determining the object’s lit appearance. Because the ambient
light is non-directional and from no particular source, it does not change
the appearance of an object based upon the object’s normals. What this
means is that, if the ambient light source is the only light turned on, the
object will appear as a featureless gray profile of itself.

• Directional light #1, with white color. The direction of the light is parallel
to your line of sight, as if a white sun were directly behind you.

The rest of the lights are OFF.

Lights, by default, are white in color, with a brightness factor of 1. To darken a
light, change its color with the RGB or HSV slider controls at the bottom of
the Lights submenu. The distance of a light from an object does not affect its

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-43

intensity; there is no inverse square law at work. To make a scene brighter,
turn on more lights.

To create an additional light, click the number on the lighting panel. Then,
click Light On to turn on the light. If you wish, click Point to make the light a
point light source instead of a directional light source.

At any particular moment, one light in the scene is the "current light". The
number of the current light is always highlighted on the lighting panel. All
the lights that are currently on are indicated by green numbers on the lighting
panel.

Light On/Light Off

Turns the current light on or off.

 Figure 5-26 Lights Menu Selection

Geometry Viewer Menu Reference

5-44 GEOMETRY VIEWER SUBSYSTEM

Directional/Point/Bi-Directional/Spot

Selects the type of the current light. In the following descriptions provide
both intuitive and more formal descriptions of the light types.

• Directional: (default light type) A light source whose rays all point in the
same direction (are parallel). The sun is the canonical directional light
source. Initially, a directional light is computationally located at infinity
along the positive world coordinate Z axis. The initial directional vector
for the light is said to be 0,0,-1, meaning that the light rays are pointing to-
wards the negative Z direction, perpendicular to the XY planes. When
you make a directional light source visible, its object representation ap-
pears to be at 0,0,1.

• Bi-Directional: A pair of directional light sources that point in exactly op-
posite directions. See Figure 5-27. This type of light can be used to "cor-
rect" the lighting of an object whose faces have been carelessly defined, so
that the normals of some faces point outward and the normals of other
faces point inward.

A bi-directional light is actually implemented as two lights — it occupies
two positions, n and n+8, in the lighting panel. For example, if you make
light #5 bi-directional, then light #13 is used as the second light. Accord-
ingly, only lights #1 - #7 can be specified as bi-directional. The two light
sources are located at infinity along the positive and negative world coor-
dinate Z axis. When you make a bi-directional light visible, its two repre-

 Figure 5-27 Bi-Directional Lights

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-45

sentations appear at 0,0,1 and 0,0,-1 in world space. Similarly, its lighting
vector is 0,0,-1 and 0,0,+1.

• Point: A light source whose rays emanate in all directions from a particu-
lar point. A bare light bulb is the canonical point light source. Point lights
sources have location in world space (initially at 0,0,1), but no direction. A
light source can be inside an object.

• Spot: A light source whose rays emanate from a particular point and are
restricted to a 90 degree cone. A flashlight is the canonical spot light
source. Spot light sources have location (initially 0,0,0), and direction (a
vector of 0,0,-1 meaning that it is initially pointing toward the -Z axis).
(Light sources can be inside of objects.) The cone angle (90 degrees) is not
adjustable. The intensity of the light thrown by the cone will fall off from
the center to the edge. The degree of fall-off is dependent upon the under-
lying graphics subsystem lighting model.

Show Lights

Displays a vector symbol for each light source, indicating its (position and)
direction. (Figure 5-28.) The size of the symbol indicates the light source’s ori-
entation vis-a-vis the view plane (the plane of the display screen). The sym-
bol’s color is the same as the light source color, and it is depth-cued (if this
function is supported) to help indicate its distance from the view plane.

directional

upper left
to lower right

bi-directional

point

spot

upper left to
lower rightupper left to lower right AND

lower right to upper left

 Figure 5-28 Symbols for Light Types

Geometry Viewer Menu Reference

5-46 GEOMETRY VIEWER SUBSYSTEM

To move (the direction of) a light, make sure that Lights is selected in the
Transform Selection part of the control panel. Then use the mouse to rotate
and/or translate the light. See the Transform Selection section for details. It
often helps to turn on Perspective under the Cameras submenu as you try to
position lights with the mouse button transformations.

Color of Light

At the bottom of the Lights menu selection area, there are RGB and HSV slid-
ers for setting the color of the light source. See "Edit Property" above for an
explanation of how to use the sliders.

The default color of all lights is white (brightness value of 1). Changing a
light’s color also darkens the light.

Cameras

Selecting Cameras causes the Menu Selection area to appear (Figure 5-29).

Cameras Defined

You look upon a world space through one or more cameras. The camera cre-
ates a view or view window on the screen. You can create multiple views of
the same world space by clicking on Create Camera under the this submenu.
Cameras are initially "located" at about (0,0,100) in world space, looking to-
ward the origin along the Z axis.

The camera sees a view volume. Initially, the camera’s view volume sees a
rectangular subset of world space extending from +5 to -5 X, +5 to -5 Y, and
+100 to -100 Z in world coordinates.

The view volume travels with the camera as it is moved about world space.
As such, it has its own coordinate system, sometimes called camera coordi-
nates. The camera is always looking from the positive Z axis of camera coordi-
nates toward the negative Z.

Although one can translate the camera, scale the camera (like zooming in and
out), and rotate the camera, in some sense this is a misnomer. What is really
happening is that world space is being rotated, scaled, and translated in order
to fit within the camera’s view volume.

You can change the shape of the camera’s view volume. By default, the view
volume is an oblong box extending from the camera’s location to infinity
along the Z axis.

• You truncate this box along the camera’s Z axis by creating two clipping
planes. Turn on Front/Back Clipping under the Cameras submenu. Ob-
jects in front of or behind the two clipping planes will not be rendered in
the view window. The location of the front and back clipping planes can
be adjusted with the Camera Options panel.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-47

• You can change the box from a rectangle to a frustrum (a squared-off
cone) by turning on Perspective. With Perspective on, the portions of ob-
jects in front of the view volume’s Z=0 plane are uniformly exaggerated
in size as they approach the camera, and uniformly diminished behind
the Z=0 plane. The angle of the side of the frustrum is 45 degrees. Per-
spective is adjustable with the Camera Options panel.
Perspective projection gives a more real world rendering of objects. You
may need to turn on Perspective for your eye to be able to interpret a
scene.

 Figure 5-29 Cameras Menu Selections

Geometry Viewer Menu Reference

5-48 GEOMETRY VIEWER SUBSYSTEM

Cameras also control different aspects of how the object is rendered, such as
depth-cueing and Z-buffering (removing hidden surfaces). All of these prop-
erties can be controlled on a per-camera basis.

There is one last point: The camera view volume’s Z=0 plane can intersect
world space from any angle. This intersection is called screen space or screen
coordinates. When you translate objects and lights using "direct manipula-
tion" movements with the workstation’s mouse buttons, the transformables
move with respect to the camera’s view volume, not world, Top, or object-level co-
ordinates. By and large, this is a distinction that you can ignore. You will usu-
ally only notice it when you use direct manipulation on objects such as the
arbitrary slicer module’s slice planes or the probe module’s pointer. When
you move the slice plane, for example, in the Z direction, the slice plane
moves straight toward or away from the camera (camera’s Z axis), not along
the object’s Z axis.

The Cameras submenu selections allow you to create additional windows to
display the current collection of objects (that is, different cameras for the cur-
rent scene). You can also create entirely new scenes, with different sets of ob-
jects. See Figure 5-30.

Create Scene

Creates a new, empty window. The new window becomes the "current win-
dow", as indicated by the bright red border.

Create Camera

Creates a new window that contains the same object(s) as the current win-
dow. This is not a new scene, but an additional window on the same scene.
Each such window can have its own camera position, and its own settings for
the camera parameters: depth cue, Z buffer, and Accelerate.

When you make a change in one window, all the windows on the same scene
are affected simultaneously. This includes rotating or moving an object,
changing an objects surface properties, changing the color or position of a
light, and so on.

See Freeze Camera for a way to suppress this synchronization of windows on
the same scene.

Note: In general, the new window is a different size from the original, so the
images of the objects are scaled appropriately. The new window becomes the
"current window", as indicated by the bright red border.

Delete Camera

Deletes the current window. If you delete the last camera of a particular scene,
then the scene itself is deleted, too.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-49

Read Scene/Save Scene

These functions allow you to maintain a disk library of scenes. Each scene
consists of one or more windows. Selecting Save Scene stores the current
state of all of the scene’s windows in a file. AVS prompts you to enter a filena-
me, and automatically adds the filename extension .scr to the name you enter.
Be sure the mouse cursor is in the one-line text-entry area before you start
typing the filename.

 Figure 5-30 Two Scenes and Three Cameras

Geometry Viewer Menu Reference

5-50 GEOMETRY VIEWER SUBSYSTEM

Selecting Read Scene brings back all of the scene’s windows to the screen.

The format of the file created by Save Scene is a CLI script containing Geom-
etry Viewer CLI commands. See the section "Geometry Viewer Commands"
section of the "Command Language Interpreter" chapter of the AVS Develop-
er’s Guide for more information on these commands.

Note: The saved .scr files contain references to objects and geometries, rather
than copies of them. For this reason, be careful not to disturb .geom files that
store the "building blocks" for your objects.

Note: You must use Save Scene to save exactly what you see in a view win-
dow. Using Save Object saves just the object, its properties, and the position
and orientation of the object in space. It does not save light or camera posi-
tions.

Hardware Renderer/Software Renderer

Selects which renderer will be used to draw the scene for the current camera.
(See the discussion on "Renderers" near the beginning of this chapter.) It is
possible to have a hardware renderer drawing the contents of one camera’s
window, and the software renderer drawing the contents of a second camer-
a’s windows. This second camera may be viewing the same scene of objects,
but with different rendering options, such as transparency, in effect. If the
platform only supports software rendering, or if -nohw or NoHW was speci-
fied at startup, then Hardware Renderer will be shaded out.

Some platforms may support additional renderer options.

Depth Cue

Note: This control is renderer-dependent. The software renderer supports
depth cueing of lines. Systems may depth cue lines, polygons, and/or
spheres.

This setting causes lines to "fade away" as they get more distant from the
viewing position, enhancing the illusion of three-dimensional depth in the
scene window. The Camera Options panel described below can control the lo-
cations where the depth-cueing effect begins and ends, and the amount of
fading applied.

Z Buffer

This setting causes AVS to take into account the fact that some objects may
block your view of other objects. By performing some extra up-front calcula-
tions, AVS can save time overall by drawing only the portion of each object
that currently is visible (not obscured by other objects).

This function is not supported on all renderers. On some systems, Z buffering
applies only to lines, not to surfaces.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-51

Perspective

This setting causes the current window to use a perspective viewing projec-
tion (the default is to use a parallel projection). See Figure 5-31 and Figure 5-
32. The difference becomes most apparent when you scale the view volume.
(Select Transform Camera. Then use the middle mouse button together with
the SHIFT key to change the size of the view volume. For more on transfor-
mations, see the section "Transformations and the Transform Selection Area"
above.)

The degree of Perspective exaggeration (45 degrees) is adjustable with the
Camera Options panel. Perspective also affects the apparent "location" of the
camera. The camera seems to be much closer to the object, and its clipping
planes are similarly shifted inwards.

The way to have a camera seem to zoom inside an object is to turn Perspec-
tive on, then translate the camera or object with the shift-middle mouse but-
ton.

 Figure 5-31 Bubbleviz hydrogen.dat without Perspective

Geometry Viewer Menu Reference

5-52 GEOMETRY VIEWER SUBSYSTEM

Accelerate

Note: This control only appears on systems that are able to save and restore
objects in an offscreen Z-buffer.

This choice is most useful when you are manipulating one object in a complex
scene. All objects (except the current object) are rendered once into offscreen
memory. As you manipulate the current object, portions of the offscreen
memory are copied to the screen, as needed, instead of being re-rendered.

Axes for Scene

This choice toggles display of XYZ axes in the current scene. The right-hand
coordinate system indicated by these axes is the "world coordinate system"
for the scene. The axes extend from +5 to -5 in XYZ.

Front/Back Clipping

This choice toggles the use of front and back clipping planes. When clipping
is enabled, objects disappear as they move either very close to the eyepoint or

 Figure 5-32 Identical Scene with Perspective

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-53

very far away. When clipping is disabled, the front and back clipping planes
still exist, but they are so distant that in most cases no front/back clipping
takes place.

The actual "location" of the clipping planes depends upon how the camera
has been scaled, and whether Perspective is turned on or not. Clipping is de-
fined in the camera’s view volume, not world coordinates. When a camera is
first created, the clipping planes are at Z=100 and Z=-100 in world space
when clipping is turned off; and at about Z=5 and Z=-5 in world space when
clipping is turned on. If you also turn on Perspective, the clipping planes
move inward to about Z=10 and Z=-10 with clipping off, and to about Z=3
and Z=3 with clipping turned on. Such statements rapidly lose meaning as
you begin to transform objects, the camera, and the Top level coordinate sys-
tem. Suffice to say that clipping off puts the clip plane very near the camera it-
self, and clipping on puts it out in front of the camera.

The location of the clipping planes can be controlled precisely with the Cam-
era Options panel.

Double Buffer

Note: This control only appears on systems that allow the user to control
whether object are rendered directly into the window or into an offscreen pix-
map.

When Double Buffer is on, objects are first rendered into an offscreen pix-
map, the transferred to the display window. If it is off, objects are rendered di-
rectly to the display window.

On some platforms, it may be necessary to turn Double Buffer off in order to
produce the highest color resolution that the display is capable of. These sys-
tems are dividing the color planes (24/12 or 8/4) between the buffers.

Sort Transparency

This feature is only supported on some renderers. Most transparency algo-
rithms have problems rendering scenes that contain overlapping transparent
surfaces. The Sort Transparency button can be used to correct the artifacts
caused by these problems.

Global Antialiasing

This feature is only supported on some renderers. When this feature is en-
abled for a camera, an antialiasing technique is applied to remove the jagged
edges effectively increasing the resolution of your image.

Polygonal Spheres

Some renderers support true hardware sphere rendering. The software ren-
derer emmulates true sphere rendering. These renderers can be directed to
disable true sphere rendering and use sphere rendering by polygonal surface

Geometry Viewer Menu Reference

5-54 GEOMETRY VIEWER SUBSYSTEM

approximation instead by toggling Polygonal Spheres. The number of po-
lygonal surfaces that will be used is controlled by the Subdivision slider on
the Objects submenu.

Freeze Camera

This function can be used to implement a different style of interaction that is
useful when the scene takes so long to render that even the use of Bounding
Box mode is too slow. When you select Freeze Camera for a camera, the cam-
era will not be updated until one of three conditions occurs:

• the camera is exposed by raising it or moving another window across it
• the Freeze Camera button is turned off for the camera
• you click the mouse in the red border of the camera

This mode is most useful when Bounding Box mode is also enabled. You can
rotate, scale and translate several objects using the bounding box extent infor-
mation to get an idea of the position, size and orientation of the object, then
hit the border of the window to cause this window to refresh.

Show Camera

This function can be used to control the visibility of the camera window. It is
particularly useful when you are using the geometry viewer module’s image
output port in a network in which you do not want to see the results directly
on the screen. For example, you either want to see the results after a filtering
operation, or want to simply process the resulting image further.

Note: the software renderer should be used for any cameras with Show
Camera turned off. Most hardware based renderers are not capable of pro-
ducing an image with an invisible image window, or will not render the por-
tion of an image that is off (or larger) than the display screen.

Camera Width/Height Typeins

These typeins on the camera menu allow the user to specify or determine the
width and height of the current camera window. In particular, the user can
enter new values to specify a new size for the window. For example, to in-
crease the resolution of an image for animation or higher quality PostScript
output, you may set the size of the camera’s window to be larger than the dis-
play screen. When doing this, also use the Show Camera and Software Ren-
derer options to force rendering, since most hardware renderers will not
render off-screen or obscured portions of their windows.

Be careful not to choose a size that is too large for the memory configuration
of your system. The software renderer requires at least six bytes per image
pixel.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-55

Edit Background Color

At the bottom of the Cameras submenu, the Edit Background Color button
will pop-up an color editor with RGB and HSV sliders for setting the back-
ground color of the current window. See "Edit Property" above for an expla-
nation of how to use the sliders.

The default background color for all windows is black. You can set the back-
ground colors (as well as the location and size) for a sequence of windows by
specifying a defaults file with the command-line option avs -geometry -de-
faults. See "Command Line Options in the "Starting AVS" chapter for details.

Camera Options Panel

The Camera Options panel (see Figure 5-33) allows the user to specify or de-
termine position and depth cueing attributes of the current camera. It is raised
by clicking on the dimple next to the Transform Camera button.

 Figure 5-33 Camera Options Panel

Geometry Viewer Menu Reference

5-56 GEOMETRY VIEWER SUBSYSTEM

The Camera Options panel displays the current values for the camera posi-
tion parameters:

From
This point contains the X, Y, Z position of the camera in world coordi-
nates. If the Perspective button is enabled, it is the "eye" position of the
camera. In both perspective and parallel projections, it defines the base
point for the front and back clipping planes and the depth cueing param-
eters. (See Figure 5-34 and Figure 5-35.)

At
This point is used in conjunction with the From point to determine the
view direction or Z axis of the camera. A line in world coordinates that
connects From to At would be drawn as an end-on line directly in the
middle of the camera window.

Up
This is a direction vector that determines the direction of the vertical axis
of the camera. A line that is parallel to the Up vector in world coordinates
will become a vertical line in the window. It is important that this direc-
tion vector be perpendicular to From - At (the view direction) or the cam-
era will "shear" the objects.

Center
This is a point that determines the rotation center of the camera.

Camera Scale
This is a scale term that is applied to camera. This value is changed when
you scale the camera. Since the scale is applied before the projection pa-
rameters, you will need to scale the front clip, back clip, depth front, and
depth back values by this number if it is not 1.0 in order to get values in
world coordinates.

Up

From At

Front Clip

Back Clip

Window Size

Visible Area

 Figure 5-34 Parallel Camera and Camera Options

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-57

Front Clip
This is a distance value in world coordinates that specifies the distance
from the From point along the view direction (towards At) before the
front clip plane. This distance must be greater than zero for perspective
projections but can be negative for parallel projections.

Back Clip
This is a distance value in world coordinates that specifies the distance
from the From point along the view direction (towards At) before the
back clip plane. This distance must be greater than Front Clip for both
parallel and perspective cases.

Field of View
This value specifies the angle formed by the edges of the view volume for
perspective projections. It must be a value between 0 and 180 degrees.
This attribute is not used for parallel projections.

Window Size
This is a scale factor for parallel projections that determines the range of
viewing. It is defined in world coordinates.

The Camera Options panel also controls the depth cueing parameters:

Up

From At

Field of View (deg.)

Visible Area

Front Clip

Back Clip

 Figure 5-35 Perspective Camera and Camera Options

Geometry Viewer Menu Reference

5-58 GEOMETRY VIEWER SUBSYSTEM

Depth Front
This parameter specifies the distance in front of the From point in the
viewing direction (towards At) where depth cueing begins. (See Figure 5-
36.) Any objects that are closer to the From point than this distance will be
drawn at full intensity.

Depth Back
This parameter specifies the distance in front of the From point in the
viewing direction (towards At) where the maximum depth scale is ap-
plied.

Depth Scale
This value is the factor that is applied to locations farther from the viewer
than the Depth Plane.

It is usually the case that Depth Front is larger than Front Clip and Depth
Back is smaller than Back Clip. Also, Depth Front should always be smaller
than Depth Back.

Labels

The Labels menu selection (Figure 5-37) provides access to the Geometry
Viewer’s annotation text facility. You can attach one or more labels to any ob-
ject. Each label consists of a single line of text. As you manipulate the object—
move it, resize it, temporarily hide it, permanently delete it, etc. — the object’s
label(s) react accordingly.

You have considerable typographic control, with a wide range of fonts, type
styles, sizes, and colors to choose from. You can also control the position of
each label relative to its associated object; one alternative is to have the label
become a title, which always appears at the same location in the window, no
matter how the object is transformed.

Depth Back

Depth front

View Direction
From

Intensity (1.0)
Depth Scale

 Figure 5-36 Depth Cueing Parameters

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-59

Creating Labels

To create a label, first make sure the object to be labeled is the current object. If
necessary, click on the object with the left mouse button. Then, click the La-
bels menu selection to bring up the Labels submenu.

Place the cursor in the empty box below Current Label, and type any string of
printable characters. Use Backspace (erase last character) and Ctrl-U (erase
entire line) to make corrections.

Press Return or move the cursor out of the typein area when you’ve finished
the label. When you do so, the label appears centered on the current object,
surrounded by a red box.

Note: In some cases, part or all of the label may be obscured by the object it-
self. The red box, however, will always be visible. If you have problems with
label visibility, turn off Z buffering under the Cameras menu selection.

 Figure 5-37 Labels Menu Selections

Geometry Viewer Menu Reference

5-60 GEOMETRY VIEWER SUBSYSTEM

To create additional labels for the same object, select the object again by click-
ing on it with the left mouse button. This clears the Current Label box. (In ad-
dition, you may want to check that the Current Object Indicator shows the
object and its name.) As before, type in a text string and press Return.

Labeling the Top Level Object

Labels you create for the Top level object apply to the entire scene — they will
appear in every window you create for the scene using Create Camera. The
"Transformations and the Transform Selection Area" section above describes
the ways in which you can select the Top level object.

Picking and Moving a Label

Each of an object’s labels is "attached" to a particular point in the object’s coor-
dinate system. Initially, this base point is the center of the object (that is, the or-
igin of the coordinate system). You can move an existing label so that its base
point is at a different X-Y-Z location:

• Moving within the X-Y plane: Click and hold down the left mouse but-
ton on the label. The red box reappears to confirm that the label has been

 Figure 5-38 Scene with Three Labels and a Title

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-61

"picked". Drag the cursor to any other location, then release the button.
This moves the base point parallel to the plane of the display screen.

• Moving in the Z direction: Hold down the SHIFT key, then use the left
mouse button as described above. This moves the label perpendicular to
the plane of the display screen. Note that this does not change the size of
the label (but see "Changing Label Attributes" below).

The label’s new location is still defined in terms of the object’s coordinate sys-
tem—you have simply changed the coordinates of the base point. As you
move, resize, or rotate the object, it remains attached to its base point, and so
moves around the display window.

Occasionally, a label may become obscured by the surface of an object. For ex-
ample, it might come to be inside an isosurface. To access such a label, change
the representation of the obscuring object to Lines or Points under the Ob-
jects submenu.

Align to Vertex/Align to Point

If you want to attach a label to one of the object’s vertices, you needn’t worry
about separate movements in the X-Y plane and the Z direction. Just click the
Align to Vertex selection, then drag the label using the left mouse button. Be-
fore you release the mouse button, make sure the cursor is on (or very near) a
vertex. This causes the vertex to become the label’s new X-Y-Z base point.

Align to Point aligns the label to the closest point on the closest adjacent
polygon, rather than to a vertex.

Making a Label Into a Title

It is sometimes desirable to have one or more labels that are associated with
an object, but which don’t move around the screen as the object is trans-
formed. Such labels are called titles. For instance, you might want a title
string for an object to appear in the upper left corner of the window whenever
the object is displayed. You can change any regular label into a title label by
clicking the Title selection.

A title label "lives" in the window’s X-Y coordinate system, rather than the ob-
ject’s X-Y-Z system. You can change the position of a title label using the left
mouse button.

Editing/Deleting a Label

To change the text of a label, first click on the label with the left mouse button
to make it appear in the Current Label box. Them move the cursor into the
box and type the changes. As when you first create a title, Backspace erases
the last character and Ctrl-U erases the entire label, deleting it from the scene.

Geometry Viewer Menu Reference

5-62 GEOMETRY VIEWER SUBSYSTEM

Changing Label Attributes: Label Menu Selections

The annotation text facility includes a two-level function menu, which allows
you to customize the appearance of each label. The Top level choices, Font Se-
lection and Label Attributes are always visible. The submenu for whichever
of these choices is currently selected appears below.

Font Selection Submenu

The submenu for Font Selection includes a list of fonts similar to the follow-
ing. (The actual list of font names you will see varies from system to system.)

Courier
Helvetica
Schoolbook
Times
Charter
Symbol

Selects the font to be used for the label.

Bold

Italic
Selects the type style. You can click both of these choices to produce a
bold-italic label. (Not all systems support Bold and/or Italic fonts.)

Label Height
Selects the point size of the label. Labels do not scale continuously; in-
stead, AVS makes best use of the available X Window System fonts. As
you move the slider to indicate a larger or smaller size (using any mouse
button, by clicking or by dragging), the label size changes when a differ-
ent font provides the closest fit.

The red box around the label does scale continuously to indicate the la-
bel’s height at the requested size, whether or not a font of that size is
available.

Label Attributes Submenu

The submenu for Label Attributes includes the following choices:

Drop Shadow
Creates a one-pixel drop shadow for the label. This can improve label
readability. (Not all systems display this option.)

Title
Makes the current label into a title, whose position is defined in terms of
window coordinates, rather than in relation to the object’s 3D location.
See "Making a Label Into a Title" above.

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-63

Stroke
(This control does not appear on all systems.) Some systems have an al-
ternative means of rendering text via Strokes. This control turns on this
feature.

Center
Left
Right

Specifies which part of the label is placed on the base point. Initially, it is
the bottom left. The alternatives are the center of the label and its lower
right corner.

Edit Label Color
An RGB-HSV color editor, similar to ones used elsewhere by the Geome-
try Viewer, allows you to specify the color of the label.

Action

The Action menu selection allows you to define "animations", which take the
form of a sequence of geometries. You can append new frames to the end of
the sequence, delete any frame within the sequence, and play back the se-
quence in a variety of ways. You can either define the sequence of geometries
as a "cycle" in the Geometry Viewer Script Language (see the "Geometry
Viewer Script Language" appendix for details), or you can create it dynami-
cally by storing away geometries that are created from the network.

The Action submenu will only display two buttons if the current object does
not have any flip-book geometry defined for it. These two buttons, Store
Frames and Append Frame, are used to create flip-book animations from ob-
jects that are generated by modules. They are described later.

When the currently selected object does have a sequence of geometries de-
fined for it, you will see the following menu choices.

Playing Back the Frames

The following functions provide a variety of ways of viewing the frames in an
animation sequence:

Step Forward
Displays the next object in the cycle. When the end of the cycle is reached,
you automatically wrap around to the first object.

Step Backward
Displays the previous object in the cycle. When the beginning of the cycle
is reached, you automatically "wrap around" to the last object.

Geometry Viewer Menu Reference

5-64 GEOMETRY VIEWER SUBSYSTEM

Continuous
Continuously cycles forward through all the objects in the cycle. At the
end of the cycle, the animation wraps around to the beginning automati-
cally. To stop the animation, click Continuous again.

Bounce
Continuously cycles through the images, but alternates between going
forward (beginning to end) and backward (end to beginning). To stop the
animation, click Bounce again.

Some systems have a sample Action animation that you can play back in the
file /usr/avs/data/geometry/math.obj, which references a series of geometry files
in the math subdirectory. Note that each frame is a distinct geometry. To play
this sequence, use Read Object on math.obj. Then, make sure it is the current
object. Bring up the Action submenu. The controls listed above should ap-
pear. If they do not, it is probably because the animation cycle is not the cur-
rent object. Press any of the above controls to play the animation.

Adding Frames

There are two modes for adding new frames to the end of the sequence:

 Figure 5-39 Action Menu Selections

Geometry Viewer Menu Reference

GEOMETRY VIEWER SUBSYSTEM 5-65

Store Frames
If you turn on this toggle switch, every new geometry sent to the geome-
try viewer module corresponding to the current scene for the current ob-
ject will be appended to the frame sequence. The Current Frame and
Total Frames counters are updated automatically.

Note: Main memory must be allocated for each frame. Make sure that
your system has sufficient memory to accommodate all the frames.

Append Frame
This is a command, rather than a toggle switch. If Store Frames is turned
off, you can click this button to add a frame to the sequence. The current-
ly-displayed geometry is not added—rather, the next time a new geome-
try is sent to the geometry viewer module, it will also be added to the
sequence.

This feature has some restrictions. Each time you read a new geometry, it re-
places the existing geometry and the old object is discarded. (Reason: when a
new geometry is added to a sequence, it must have the same name as the ob-
ject being animated; that is, it must be a modification of the current object.)
This means that you can’t create an animation simply by clicking on a series
of different names in the File Browser. You can create this kind of animation
using the Script Language, however.

A frame contains a geometry definition only, not such attributes as the trans-
formation, surface color, or material properties. Likewise, lighting informa-
tion is not captured in a frame. This means, for instance, that you can’t create
an animation that shows an object going through a rotation sequence. (The ro-
tation is a transformation attribute, not part of the object’s geometry.)

Animating More Than One Object

It is fairly common to want to animate more than one geometric flipbook at
the same time. To do this, create each object’s animation sequence indepen-
dently either using the Store Frames, Append Frame, or the Geometry View-
er Script Language. Make sure that each object has the same number of
frames in its animation and that each object starts out on the same frame
number if the animations are to be kept in sync.

Now set the current object to be the object called top (or any other object that
contains all of the objects to be animated as children). When you press the Ac-
tion command, you will see that you have access to the menu buttons: Step
Forward, Step Backward, Continuous, Bounce and Delete Current Frame.
When any one of these buttons is pressed, it will perform the function for
each of the child objects that have a defined animation. For example, if you
choose the Step Forward button, each of your several objects will advance a
frame. If you choose Continuous, all of the objects will begin continuously
animating at the same time.

You cannot select Store Frames or Append Frame on a parent object and have
that object automatically store the frame for each individual child. You must
create the animations of the leaf objects individually.

Geometry Viewer Command Language Interpreter

5-66 GEOMETRY VIEWER SUBSYSTEM

Deleting Frames

Clicking the Delete Current Frame button deletes one frame. (There is no
way to delete a range of frames.) Typically, the current frame is the one most
recently added to the sequence, but you can make any frame current. Use
Step Forward or Step Backward to move to a particular frame. Alternatively,
go to the Current Frame box, use Backspace or Ctrl-U to erase the number al-
ready there, type a new number, and press Return.

Geometry Viewer Command Language Interpreter

It is possible to drive the Geometry Viewer with the AVS Command Lan-
guage Interpreter (CLI) rather than the X display interface. The commands
can be either typed in interactively from a terminal emulator window while
AVS is running, they can be read from a script file, or they can be sent from a
user-written module.

Note: The Geometry Viewer Command Language Interpreter is not the same
thing as the Geometry Viewer Script Language.

This opens many possibilities:

You can create scripts that animate the Geometry Viewer. not just the net-
work-produced images within it, producing demonstration, illustration and
test scripts.

To run AVS with the Command Language Interpreter (CLI) active, type this:

avs -cli other-options

This starts AVS as usual, but also starts the CLI command line interpreter in
the invoking window. (You might have to press carriage return to get the avs>
prompt.)

To get a list of the Geometry Viewer CLI commands, type the following:

avs> help Geometry

This produces a list of Geometry Viewer CLI commands. To get help on an in-
dividual commands, type "help" plus the command name:

avs> help geom_set_matrix
geom_set_matrix Sets a transformation for an object, camera, or light.
 Usage: geom_set_matrix {-object<name>}{-camera{1-n}}...
 .
 .
 .
avs>

Many of the AVS Demo scripts in /usr/avs/demosuite/General/Geom contain Ge-
ometry Viewer CLI commands. When you save an object or a scene with

High Quality Image Output

GEOMETRY VIEWER SUBSYSTEM 5-67

Save Object or Save Scene, the resulting .scr file is written out in Geometry
Viewer CLI commands.

The Command Language Interpreter and the Geometry Viewer set of CLI
commands are documented in detail in the "Command Language Interpreter"
chapter of the AVS Developer’s Guide.

High Quality Image Output

One often wishes to capture the contents of the Geometry Viewer window in
a PostScript file for presentation purposes (documents, lecture slides, etc.)
There are several techniques to do this using the geometry viewer module’s
image output port.

image to postscript module
Connect the image output port to the image to postscript module to con-
vert the contents of the current scene window into a monochrome or col-
or PostScript file. You should usually be using the software renderer
when attempting this, because the software renderer will output a 24-
plane true color image, even on 8-plane systems. If memory space per-
mits, you can improve the quality of the output image by enlarging it sig-
nificantly with the Camera Width/Height typeins. Again, the software
renderer should be used to force output of obscured or off-screen areas.

See the image to postscript man page for information on image scaling
and orientation.

geom_save_postscript CLI command
The main drawback to using the image to postscript module is that it out-
puts at the resolution of the screen (approximately 100 dpi), not at the res-
olution of many PostScript printing devices (300 dpi and greater).
Enlarging the image as described above is an effort to overcome this basic
fact.

The geom_save_postscript CLI command will output the contents of the
Geometry Viewer scene window using PostScript text and line-drawing
primitives where possible, improving the quality of labels and lines in the
final image. (There are no PostScript primitives for shaded polygons.)
You must be using the software renderer.

At present, geom_save_postscript has no Geometry Viewer button that
represents it; it must be typed to the CLI monitor. See the discussion on
geom_save_postscript in the "Geometry Viewer" section of the "Com-
mand Language Interpreter" chapter of the AVS Developer’s Guide for par-
ticulars.

The image output port is also used with the optional AVS Animation Applica-
tion, if present, to send images to the various Animation image sequence stor-
age and processing modules.

High Quality Image Output

5-68 GEOMETRY VIEWER SUBSYSTEM

NETWORK EDITOR SUBSYSTEM 6-1

CHAPTER 6 NETWORK
EDITOR
SUBSYSTEM

Introduction

AVS’s Network Editor subsystem is a visual programming interface for creat-
ing, testing, and revising AVS visualization networks. It supports these major
features:

• You can save the visualization networks that you create as a visualization
application.

• The applications can be made accessible from the main menu’s AVS Ap-
plications submenu. (The mechanism for doing this is described at the
end of the "Starting AVS" chapter.)

This chapter explains the basics operations necessary to use the Network Edi-
tor. The "Advanced Network Editor" chapter later in this User’s Guide de-
scribes these additional Network Editor features:

• You can use the Network Editor’s Layout Editor to redesign the user in-
terface to a network, so that others can perform visualization tasks with-
out having to be knowledgeable about network construction.

• Networks can contain a mixture of modules that execute locally, and
modules that execute on a remote host that runs AVS . The remote host
can be "heterogeneous," that is, of a different hardware type than your
workstation.

• Where multiple processors are available, modules can execute in parallel.
• The user can see and control which process a module executes in.
• Sets of modules can be interactively grouped together to form one macro

module. Macro modules behave in the same way as individual modules.
The macro module can be added to the module Palette, saved, read in,
and made part of a module library.

• You can create libraries of modules to support an individualized reper-
toire of visualization functions.

The Network Editor can also be driven by the AVS Command Language In-
terpreter (CLI), either by typing Network Editor CLI commands to the CLI
prompt, by reading a CLI script file, or from a user-written module that sends
CLI commands to the Network Editor via the AVS kernel. Furthermore, the
Network Editor supports a journaling feature. You can record your Network
Editor interactions into an ASCII file, which you can then edit to produce a
demonstration script that can be later replayed. This is how the AVS Demo

Starting the Network Editor

6-2 NETWORK EDITOR SUBSYSTEM

suite scripts described below were created. See the "Command Language In-
terpreter" chapter in the AVS Developer’s Guide for information on this func-
tionality.

Starting the Network Editor

To start the Network Editor subsystem, click the Network Editor button on
the AVS main menu. If you’re not currently at the main menu, you can return
there by clicking the Close button at the top of the current subsystem’s main
control panel.

A Network Control Panel window appears along the left edge of the screen.
Initially, this window is empty, since no network is currently active.

The remainder of the screen is used for the Network Construction window,
which is divided into an upper part and a lower part. The upper part is
shared by the Network Editor Menu and the Module Palette. The lower part
is the Workspace in which you build networks (Figure 6-1).

Getting Help

On-line help for the Network Editor is available via two Help buttons. The
Help button in the Network Construction window brings up a Help Panel.
The Help Panel has two features:

Network
Control
Panel

Network
Editor
Menu

Module Palette

Workspace

resizing handle

 Figure 6-1 Network Control Panel and Network Construction Window

Starting the Network Editor

NETWORK EDITOR SUBSYSTEM 6-3

• It contains a scrolling browser of Network Editor usage topics. Clicking
on one of these topics makes the help text appear in the Help window.

• It contains a Help Demos button. Clicking on this produces a browser of
automatic scripts that illustrate various visualization modules perform-
ing in networks. The scripts load a sample network, and run some inter-
esting data and parameter settings through it. When the script is finished,
it leaves the network in the Network Editor so that you can experiment
with it yourself. The next script read in will clear the previous network.
You must get rid of the last network manually, either by hitting Clear
Network on the Network Editor’s panel, or by simply Exiting the Net-
work Editor.
While the script runs, you can cause it to Pause, Continue, or Abort.
See the "Using On-Line Help" section in the "Starting AVS" chapter for de-
tails on using on-line help.

The various AVS Demo suite scripts, accessible from the main Applications
menu, also illustrate the Network Editor in use. Like the Help Demos, these
demonstration scripts leave the networks in the Network Editor so that you
can experiment with them further. The Demo suite is a good way to learn
which modules are connected together in which patterns to produce useful
visualizations of different types of data.

To get help on individual modules, their purpose, ports, and parameters, click
on the module icon’s "dimple" with the middle or right mouse button. This
brings up the Module Editor panel. Then click on Show Module Documen-
tation. This will display the module’s "man page" description that includes a
sample network.

The Help button in the Network Control Panel window will probably be of
limited use—when you click it, AVS tries to locate a help file named after the
currently-active network. No such help files are supplied with this release.

Closing the Network Editor

The Network Editor subsystem has two top-level windows, which can be
closed separately:

• Click the Exit button at the top of the Network Control Panel window to
exit the Network Editor and return to the AVS main menu. Unlike the
other AVS subsystems, this is a true exit. Work will be lost if you do not
save it. The Network Editor raises a dialog box on the screen that gives
you a chance to cancel the Exit so that you can save your work (e.g., Write
Network) before it exits. Any current work is lost, so be sure to save your
work first.

• Click the Close button at the top of the Network Construction Window to
close that window without destroying any work. This button is useful
when you finish building a network and want more screen space for exe-
cuting the network (e.g. for manipulation of the network’s display win-
dows).

Starting the Network Editor

6-4 NETWORK EDITOR SUBSYSTEM

Clicking this button causes a Display Network Editor button to appear at
the top of the Network Control Panel window. This allows you to reopen
the Network Construction Window at a later time.

Switching Subsystems

In many situations, you’ll want to switch to the other AVS subsystems with-
out losing your current Network Editor work. For example, if you create a
network that displays a geometry, you may want to modify the rendering
method or the lighting with the Geometry Viewer. There are two ways to go
directly from the Network Editor to the other subsystems:

• Position the mouse cursor over the Data Viewers button at the top of the
Network Control Panel. Press and hold down any mouse button. A pop-up
menu appears listing the other subsystems. Roll the mouse cursor down
to the subsystem you wish to start, then release the mouse button. The
control panel for the selected subsystem will appear on top of the Net-
work Control Panel. You can return to the Network Editor by clicking the
Close button at the top of each subsystem’s control panel, or simply use
your window manager to move the control panel to another part of the
screen.

• If a network includes the geometry viewer, image viewer, or graph view-
er modules, use the left mouse button to click the small square box in the
icon for the module.

Status Widget

At the top of the Network Control Panel is a Status widget.

This device shows which module is executing, and gives an approximate idea
of its progress. If the widget shows 10%, it means that the module is receiving
data. 90% means it is done processing the data and is outputting the result.
Anything in between means that the module is executing. Individual mod-
ules can use this Status widget to give more precise statements of progress.
The read field module does this. Not all modules take advantage of this.

Overview of Network Editor Usage

In general, creating a network includes these steps:

• Using the mouse to pull modules from the Palette into the Workspace,
and/or reading already-existing networks from disk storage.

 Figure 6-2 Status Widget

Using the Module Palette and the Workspace

NETWORK EDITOR SUBSYSTEM 6-5

• Using the mouse to connect the modules’ input and output ports. The
connections define the network by specifying the flow of data among the
modules.

• Adjusting the modules’ input parameters using the widgets in the Net-
work Control Panel.

These steps are described more fully in the sections that follow.

Using the Module Palette and the Workspace

When you first start AVS, the Network Editor loads its Module Palette (Figure
6-3) with one or more sets of AVS modules.

AVS uses its system-default startup file in /usr/avs/runtime/avsrc to determine
which modules to load. This startup file contains the following line:

ModuleLibraries /usr/avs/unsupp_mods/Unsupported /usr/avs/avs_library/Supported

This instructs AVS to load two Module Library files: Unsupported and Sup-
ported. A module library is an ASCII file containing lines that describe the
names of modules and where to find them. It is used to quickly construct the
icons in the Module Palette and make them known to the AVS kernel without
actually loading the binary module files.

 Figure 6-3 Module Palette

Using the Module Palette and the Workspace

6-6 NETWORK EDITOR SUBSYSTEM

The last module library specified is the set that will be showing when you en-
ter the Network Editor; thus the system default .avsrc file lists the Supported
library file last.

Supported and unsupported modules are documented in the AVS Module Ref-
erence Manual.

All loaded module libraries appear as icons across the top of the module Pal-
ette. You switch between the module libraries by clicking on their icons.

If you have a .avsrc or .avsrc.X file, then you can override the default list of
module libraries in the system avsrc file. Place a ModuleLibraries line in
your personal .avsrc or .avsrc.X file. AVS then loads modules from the library
files specified. The last library listed shows as the default set in the Module
Palette. Note that ModuleLibraries needs full file specifications, and that all
of the libraries listed must be on one (perhaps very long) line.

You can also load any library by using the -library option on the AVS com-
mand line, or by loading the library interactively with the Read Module Li-
brary button under the Network Editor’s Module Tools menu.

You can create your own module library files. These may contain your own
modules, and/or be a subset of the AVS supported and unsupported modules
containing only the modules you regularly use. This is discussed in the "Con-
structing a Module Library" section in the "Advanced Network Editor" chap-
ter.

Module Types

The Module Palette includes an icon for each of AVS’s computational mod-
ules. The modules are partitioned into four functional categories:

Data Input Modules
These modules introduce new data into an AVS network. Some modules
(e.g. read field) read a data file from disk storage. Other modules (e.g
generate colormap) create data according to the settings of their input pa-
rameters.

Filter Modules
These modules transform a numerical data set into another numerical
data set. They perform such actions as sampling, subsetting, establishing
threshold values, applying a linear transformation, etc.

Mapper Modules
These modules perform the "visualization" step—converting a numerical
data set to a description of one or more displayable objects, either geome-
tries or images. For instance, the field to mesh module creates a 2D sur-
face in 3D space. It does so by interpreting each scalar value of a 2D array
as the height of a point above a base plane. The collection of points de-
fines (an approximation to) a 2D surface above the plane.

Using the Module Palette and the Workspace

NETWORK EDITOR SUBSYSTEM 6-7

Data Output Modules
These modules produce the final output of the visualization process. In
most cases, this is an on-screen image, displayed in its own window.
Some modules store image data in image files for later display, or in Post-
Script files for printing.

Module Input/Output Ports

Each module icon shows the module’s name, along with input ports and out-
put ports to indicate the types of data that the module handles (Figure 6-4).
The ports are color-coded to indicate the type of data that can pass through
the port.

You need not memorize the color-coding scheme—AVS allows you to connect
ports only if their data types are compatible. You can also display the ports’
data types by clicking the small square Module Editor button on the module
icon (the "dimple") with the middle or right mouse button. This pops up the
Module Editor window (Figure 6-8), which displays helpful information
about the module: a capsule description, the data type of each input and out-
put port, a list of the input parameters, and which module procss and group it
is running in. If you need further information on the module, click the Show
Module Documentation button in the Module Editor window to display the
entire manual page for the module in a help browser window.

The next few sections describe how to work with module icons using the
mouse. For quick reference, here’s a listing of how the mouse buttons work in
this context:

• Left Mouse Button: Move one or more icons.
• Middle Mouse Button: Establish a connection between two icons.
• Right Mouse Button: Break an existing connection between two icons.

Finding the Module You Want

The Network Editor’s standard module library includes more than 140 mod-
ules. This number is large enough so that you may not immediately see the
module you’re looking for at any given moment. And in some cases, there are
too many modules in a particular category to fit in the vertical space allotted
to the Palette. The following sections describe AVS’s several facilities for han-
dling such situations.

 Figure 6-4 Module Icon

Using the Module Palette and the Workspace

6-8 NETWORK EDITOR SUBSYSTEM

Scrolling a Module List

The icons in each category are listed alphabetically. If AVS cannot simulta-
neously display them all in the allotted space, it adds a scroll widget to the
category’s title bar:

One or both of the arrows are lit at any moment, indicating which way(s) the
list can be scrolled. Clicking the left mouse button in the title bar scrolls to-
ward the top of the list; clicking the right mouse button scrolls toward the bot-
tom.

Incremental Search Through a Module Category

Each module category is organized alphabetically by module name. At any
time (even when all the module icons in a category are visible), you can per-
form an incremental search through the names:

1. Put the cursor in the title bar of the category to be searched.
2. Type any character in the module’s name. The list automatically

scrolls so that the first icon containing that letter is at the top of the
list

3. Now, there are two ways to continue searching:
• Type the next letter in the module’s name. The next icon con-

taining the pair of letters scrolls to the top.
For instance, to search for the colorize module, you might type
"c" followed by "o", or you might type "i" followed by "z".

• Press RETURN to continue the search on the current basis—
that is, search for the next icon containing the letter you typed.

4. Any time the cursor is in the title bar of a category, you can press
Backspace to scroll the category back to the top.

5. You can repeat the preceding step as many times as you like, either
adding characters to the search string, or pressing Return to contin-
ue the search for the same string.

There is no need to explicitly end the search. Whenever you’re finished
searching, just stop typing. Similarly, nothing special happens if a search
string fails to match any module—the list simply doesn’t scroll.

 Figure 6-5 Scroll Icon for a Module Category

Using the Module Palette and the Workspace

NETWORK EDITOR SUBSYSTEM 6-9

Making the Module Palette Larger

In some cases, you may find it desireable to change the vertical space allot-
ment for the Module Palette. Increasing it can reduce the need for scrolling
the module lists. There is a "handle" marked with scroll arrows at the top of
the Workspace area (see Figure 6-1). When you place the cursor on this han-
dle, a message appears alongside it, explaining how to use it: grab the handle
with any mouse button and move it downward or upward. That is, click and
hold down the mouse button, drag the mouse, then release the button. This
changes the partitioning of the Network Construction window between the
upper area (Palette/Menu) and the lower area (Workspace). The Mod-
ulePanelHeight .avsrc keyword controls the same feature.

Moving Icons into the Workspace: Left Button

Use any mouse button to drag a module icon from the Palette to the Work-
space. As you do so, the module’s control panel—the set of widgets that con-
trol the input parameters—appears in the Network Control Panel window at
the left side of the screen. (See Figure 6-6.)

Note: Do not drag a module from the Palette directly to the the Hammer in
the Workspace in one continuous motion. This deletes the module from the
Palette. If you do this by mistake, you can get a new copy of the module using
the Module Tools submenu’s Read Module button.

At the top of the Network Control Panel is a choice menu ("radio button"
menu) labeled "Top Level Stack", which lists all the modules currently in the
Workspace. At any moment, one module’s control panel is visible. Click in the
menu to bring any other module’s control panel in view.

You can also bring up the control panel of any module in the Workspace by
clicking the small square on the module icon (the "dimple") with the left
mouse button.

It is useful to select control panels by clicking on the module icon’s dimple
with the left mouse button:

• When there are multiple instances of the same module. If you click on the
module’s dimple, there is no doubt which module’s controls are dis-
played.

• If one of the modules is the geometry viewer, image viewer, or graph
viewer, this is a quick way to bring up their respective control panels.
When the geometry viewer, image viewer, and graph viewer modules
are dragged into the Workspace, their control panels do not appear, nor
are their names added to the Network Control Panel menu. The control
panel for these modules are the entire Geometry Viewer, Image Viewer,
and Graph Viewer subsystems, described in their own chapters.

Using the Module Palette and the Workspace

6-10 NETWORK EDITOR SUBSYSTEM

The appearance of the Network Editor’s control panel can be changed. If your
networks contain so many modules that the supplied control panel is not long
enough to hold all of the radio buttons, you can change the radio buttons into
a scrolling browser similar to a file browser (see the StackSelector keyword
description in the "Starting AVS" chapter). You can also use the Layout Editor
to make more module control panels visible simultaneously.

When you click the small square on these modules’ icon with the left mouse
button, the respective Viewer control panel appears, obscuring the Network
Control Panel. To make it disappear, click the Close button at the top or use
the left mouse button to click the small square of some other module icon in
the Workspace. Another alternative is to move the Viewer control panel aside,
using the X Window System window manager. This allows you to see both
the Viewer’s control panel and the Network Control Panel at the same time.

Moving Modules within the Workspace

Once a module icon is in the Workspace, you can move it around without
breaking connections, again using the left mouse button. You can also drag a
rectangular (Figure 6-7) lasso around several icons:

• Click and hold down the left mouse button when it is not on a module
icon. This places one corner of the lasso.

 Figure 6-6 Network Editor Control Panel and Network

Using the Module Palette and the Workspace

NETWORK EDITOR SUBSYSTEM 6-11

• Drag the mouse to expand the lasso, fully enclosing one or more module
icons.

• Release the button to complete the lasso.
• Press the left button again with the mouse cursor within the lasso area to

drag the entire group to a different location in the Workspace.

To remove a lasso, click the left mouse button in the Workspace background.

In the Workspace, the right mouse button moves the entire network.

Deleting Modules from the Workspace

Use the left mouse button to drag a module icon onto the hammer icon in the
lower right corner of the Workspace. You can also lasso several icons, drag the
entire lasso area so that any part of it touches the hammer, then release the
button.

Whenever you delete a module from the Workspace, any connections be-
tween its ports and those of other modules are automatically deleted, too. The
deleted module’s control panel disappears from the Network Control Panel.

"Hammering" an executing module causes that module to terminate execu-
tion. (However, see the cautions in the "Cancelling an Operation" section.)

Connecting Modules: Middle Button

The small colored bar(s) at the top edge of a module icon represent the mod-
ule’s input ports. (Data modules have no input ports, since they introduce new
data into a network, rather than process data that is already there.)

Similarly, the colored bar(s) at the bottom edge represent output ports. (Many
Data Output modules have no output port, since they don’t pass any data to
other modules. Instead, they either display an image on-screen or write data
to a disk file or output device.)

 Figure 6-7 Two Lassoed Modules About to Be Deleted

Using the Module Palette and the Workspace

6-12 NETWORK EDITOR SUBSYSTEM

The ports are color-coded to represent the type of data that can pass through.
(See the "Importing Data Into AVS" chapter for a full discussion of AVS data
types.) An output port can only be connected to an input port with a match-
ing color. The color codes are defined under "Port Color-Coding" in the next
section.

To make a connection:

1. Click and hold down the middle mouse button on one module’s
output port. AVS automatically displays thin lines that indicate all
the valid connections to other modules’ input ports.

2. Drag the mouse toward one of the valid destinations.
3. As soon as AVS highlights the connection you want to make (turns

it white), release the button to complete the connection. It’s not nec-
essary to drag the mouse all the way to the destination.

If you release the mouse button before any of the possible paths is highlight-
ed, no connection is made. You can also avoid making a connection by return-
ing the mouse cursor to the original output port.

The same procedure works for making connections in the opposite direc-
tion—start on an input port and connect backward to another module’s
matching output port.

The details of connecting data ports is covered in the next section.

Disconnecting Modules: Right Button

The process of disconnecting modules is similar to connecting them, except
that you use the right mouse button instead of the middle button. Click and
hold down the right mouse button on a connected input (or output) port.
Drag the mouse toward the other end of the connection, until the connection
to be deleted is highlighted. Then release the button.

When you delete a module from the workspace (see above), all its connec-
tions are automatically deleted, too.

Completing a Network

A network is complete when it includes one or more modules that generate
data, and one or more modules that display an image (or store data on disk).
It can also include any number of modules that perform intermediate process-
ing on the data.

Input/Output Ports

NETWORK EDITOR SUBSYSTEM 6-13

Input/Output Ports

Modules have three kinds of input/output ports: data ports, parameter
ports, and upstream data ports. Simple data ports are dicussed in the follow-
ing sections. Parameter ports and upstream data ports are described in the
"Advanced Network Editor" chapter.

Data Ports

Modules receive and transmit data through one or more data ports. Data are:

• the field, image, volume, unstructured cell, or molecule representations of
scientific data;

• the colormaps that modules use to represent data as colors;
• and the pixmaps, images, and geometries that are the viewable constructs

of data that modules produce.

Module data ports are always visible on the module icon.

The Module Editor and Parameter Editor Windows

Each module icon has a small square Module Editor button ("dimple") at its
right edge. You can use the middle or right mouse button to click on this but-
ton to bring up the Module Editor window (see Figure 6-8).

The Module Editor window contains detailed information about the module
including:

Name
The name of the module. If this module is a macro module, you can edit
the name by typing into this field. If the module is not a macro, the name
cannot be changed.

Host
This field contains the host name that the module is running on, or the
string: (local) if the module is running on the local host.

Group
This field contains the module process group. This field can be used to
optimize the process allocation of modules. When a module is created by
placing it onto the workspace, in certain circumstances this module is cre-
ated to be in the same process as an existing module. This can make mod-
ule start up time faster and reduce data communication overhead
between the modules (if shared memory is not available). The module
group for the module can be used to override this feature. It is normally
not necessary to use this attribute. See the "Advanced Network Editor"
chapter later in this User’s Guide and the "Advanced Topics" section of the

Input/Output Ports

6-14 NETWORK EDITOR SUBSYSTEM

Developer’s Guide for more information on how to use this feature. The de-
fault is "(none)".

Path
This field contains the pathname of the file that is used to create the mod-
ule. For a module that is builtin to the AVS kernel, this field is simply the
string: "<builtin>".

 Figure 6-8 The Module Editor

Input/Output Ports

NETWORK EDITOR SUBSYSTEM 6-15

Process
This field contains the UNIX process identifier for the module. If the mod-
ule is a remote module, the process id of the process used to start the
module is also displayed in this field.

Module Description
This window provides a first level of documentation for the module: a
one-sentence summary description, descriptions of the input and output
ports, and a listing of the module’s input parameters.

Inputs
This section lists the inputs for the module (see the "Port Editor" section
below).

Outputs
This section lists the outputs for the module (see the "Port Editor" section
below).

Parameters
This section lists the parameters for the module (see the "Parameter Edi-
tor" section below).

Show Module Documentation
Displays the compete manual page for the module in a help browser win-
dow.

 Figure 6-9 Module Help Browser

Input/Output Ports

6-16 NETWORK EDITOR SUBSYSTEM

Disable Module
Temporarily inhibits the module from executing, preventing it from re-
ceiving or sending data. This may prevent execution of the entire network
if there are no alternate data paths. The module icon turns red to indicate
its disabled state.

To reenable the module, click this button again.

Change Module Category
Press down and hold the mouse button when the cursor is on this button
and you will see a pop-menu that lists the different module categories
that are available for this module. Move the cursor until it is over the new
category for this module and then release the mouse button. If the mod-
ule is in the module library Palette, the module icon will jump to the new
category. If the module is a macro module that you are editing, it will ap-
pear in the category you selected when you finish editing the macro. If
the module is an instanced module, there is no real change.

By default, the module categories are: Data Input, Filters, Mappers, Data
Output. The current module categories are a property of the current mod-
ule library.

This feature is useful when you are customizing a module library. You
might, for instance, change the name of the "Data Input" category to
"Field Modules" and then rearrange modules to and from this category,
saving the results with the Edit Module Library panel’s Write Library
function.

Close
This button closes the Module Editor panel.

The Port Editor

If you have opened the Module Editor window from the Workspace (not from
the Palette) you can bring up a Port Editor window for any one of the input or
output ports of the module. The Port Editor lets you control the visibility of
the input or output port on the module with the Port Visible button. If a port
is not visible , any connections to or from it are not displayed by the network
editor. You might want to hide some of the complexity of a network by hiding
ports on modules. Occasionally modules will set default port visibility at-
tribute to hide rarely used optional ports from the naive user. Modules that
use upstream data (see the "Advanced Network Editor" chapter) often hide
the upstream input and output ports to reduce the complex appearance of the
network.

The Parameter Editor

Once you have opened the Module Editor window from the Workspace (not
from the Palette), you can click on any of the input parameters to open its Pa-
rameter Editor window. This window allows you to change the control wid-
get that is attached to the input parameter. For instance, you might want a
parameter that currently is controlled by a dial to be attached to a type-in in-

Input/Output Ports

NETWORK EDITOR SUBSYSTEM 6-17

stead. This would allow you to enter an exact value, such as 48.2, rather than
using the mouse to fine-tune a dial setting.

You also use the Parameter Editor’s Port Visible button to make the normal-
ly-invisible parameter and upstream data ports visible (see the "Advanced
Network Editor" chapter).

Port Color-Coding

red = geometry
A geometry is a geometric description of one or more objects (a "scene"). It
can be created by a module or other program using calls to the AVS lib-
geom library (see the AVS Developer’s Guide). Along with the definitions of
the objects in terms of points, lines, triangles, spheres, etc., a geometry can
include specifications for vertex and surface colors, lighting, rendering
mode, transformations (translation, rotation, scaling), and transparency.

AVS includes conversion utilities that accept data in common formats and
produce geometry files that can be read into a network with the read ge-
ometry module.

AVS also includes modules that dynamically convert "raw" data into ge-
ometries (e.g. the field to mesh module).

yellow = colormap
A colormap is a table that converts an integer value to a pixel value (i.e. to
a color). Typically, you use the generate colormap module to create color-
maps dynamically. This module also allows you to maintain a set of on-
disk colormaps that you can load during network execution.

multi-color = field
A field is a very flexible data type, more like a collection of related types.
A field is a generalization of the array structure that is used to represent
many kinds of scientific data.

 Figure 6-10 Parameter Editor

Input/Output Ports

6-18 NETWORK EDITOR SUBSYSTEM

orange = unstructured cell data
Unstructured cell data (UCD) is commonly used in finite element analy-
sis.

magenta = molecule data type
The molecule data type (MDT) stores information about molecules and
their component atoms.

"Matching" has a special meaning in the case of the multi-colored field ports.
For more information, see "Connecting Field Ports" below.

(For more information, see the "Importing Data Into AVS" chapter.)

Parameter data ports (described in the "Advanced Network Editor" chapter)
are color-coded by this scheme:

medium purple = float
light purple = integer
grey blue = string
white = 0 or 1 bit

Boolean and tristate parameters are implemented internally as integers. Thus
their parameter ports show as light purple.

Connecting Field Ports

The AVS field data type is actually a general format—you can think of it as a
collection of related subtypes. Fields can differ in their dimensions: 1D, 2D,
3D, etc. Fields can also differ in the type of data that is specified for each
point: scalar byte, 4D vector of bytes, scalar float, etc., and in their coordinate
systems (uniform, irregular).

The various field subtypes are incompatible: a module that outputs a 2D field
cannot be connected to one that expects to input a 3D field; a module that out-
puts floating-point data cannot be connected to one that expects to input byte
data.

AVS includes modules that convert field data from one type to another. For
instance, the field to byte module accepts any field as input, and outputs a
field whose data values are bytes. This may be necessary when you plan to
use a module that accepts byte-valued fields only (e.g., tracer). Similarly, there
are modules for handling dimension-based conversions. The orthogonal slic-
er creates a 2D slice from any 3D field. You can extract one scalar element
from a vector field using extract scalar; you can assemble a vector field from
scalar components using combine scalar.

In AVS, many modules have been generalized to accept a wide variety of in-
put types. For example, colorizer accepts integer and floating point input val-
ues in addition to bytes.

Input/Output Ports

NETWORK EDITOR SUBSYSTEM 6-19

As an aid in matching field subtypes, the color bars for field input and output
ports are divided into four parts (Figure 6-11 and Table 6-1.):

Note that the color gray is a "wildcard": it indicates that the module is written
to handle any of the supported alternatives. For example, if the second part of
an input port color bar is gray, the module can accept fields of any dimension-
ality. This means that the color bars for field ports don’t have to match exactly
to be candidates for connection (Figure 6-12.).

AVS checks to see that a field to field connection is at least plausible. For ex-
ample, if the sending module (A), outputs an unrestricted field, and the re-

Table 6-1 Color-Coding for Field Input/Output Ports

Color Meaning

Intrinsic Data Type blue field
Dimensionality of Field red 1-dimensional

green 2-dimensional
blue 3-dimensional
gray any dimensionality

Length of Value Vector at Each
Point in Field

red 1
green 3
blue 4
gray any vector length

Data Type of Each Value red byte
green integer
blue single-precision floating point
yellow double-precision floating point
gray any of the above

Intrinsic Data Type Length of Value Vector

Dimensionality of Field Data Type of Each Value

 Figure 6-11 Color-Coding for Field Input/Output Ports

Controlling the Execution of a Network

6-20 NETWORK EDITOR SUBSYSTEM

ceiving module (B) accepts only uniform scalar fields, it is plausible that A
will send B the right thing, so the connection is allowed.

If A actually sends B an irregular vector field when the network executes,
then AVS’s runtime checking will catch it and send you a notice of the run-
time incompatibility.

Controlling the Execution of a Network

As you build a network, its modules start to execute. In most cases, nothing
useful will occur until the network is complete and you specify the input data
to be visualized. Thereafter, the network re-executes every time ...

• ... you specify a different data set (or the data entering the network chang-
es in some other way)

• ... you change the setting of a module input parameter.

To stop a network from executing automatically, press the Disable Flow Exec-
utive button on the main Network Tools menu (Figure 6-13.) Disable Flow
Executive suspends network execution, allowing you to adjust several pa-
rameters before having the network reexecute.

You make these changes to the network’s execution environment using the
Network Control Panel window at the left edge of the screen. The Network
Control Panel is organized as follows (see Figure 6-14):

• Individual control widgets (sometimes simply called controls or wid-
gets) correspond to the input parameters of the modules in the network.

• Each module’s controls are assembled onto a page. Each module has its
own page, whose size depends on the number of input parameters and
the control widgets attached to them.

module that outputs
3D scalar byte field

module that inputs
any scalar byte field

module that outputs

module that inputs
2D scalar byte field

blue

blue red red

gray

gray

green

any scalar byte field

blue red redblue

blue red red red red

 Figure 6-12 Gray Color-Coding as Wildcard Value

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-21

• All of the pages are gathered into the Network Control Panel window,
which has the form of a stack: only one page at a time is visible; you can
switch among the pages by clicking in the choice menu at the top of the
window. (This menu is automatically created as you add pages to the
stack.)

• You can change this default layout with the Layout Editor described later
in the "Advanced Network Editor" chapter. If you save a network with a
modified layout, the new layout is saved with it.

Cancelling an Operation

In many situations, you can "hammer" a running module. Use the left mouse
button to drag the module to the Hammer in the lower right corner of the
Workspace. This causes the module’s process to exit.

For example, perhaps you were using AVS from a display that does not have
hardware sphere rendering and you created a visualization network for a
very large dataset that included sphere rendering, and you did not remember
to use the Geometry Viewer’s Subdivision control to reduce the number of
polygons used to create each sphere. You might sit watching the scatter dots
module executing for awhile until you began to realize that you will be sitting
there for a very long time before you see any picture. Hammer the scatter
dots module (its connections will be broken automatically), toggle Disable
Flow Executive, drag down a new copy of the module (and perhaps a down-
size module to reduce the size of the dataset) and hook it up, set Subdivision
to 1 in the Geometry Viewer, then turn the Flow Executive back on.

 Figure 6-13 Disable Flow Executive Button

Controlling the Execution of a Network

6-22 NETWORK EDITOR SUBSYSTEM

If the module that you hammered was part of a multiple-module set execut-
ing as one process, the Network Editor will restart all of the unhammered
modules in the process with their parameter settings intact.

You may need to manipulate one of the parameters of a module upstream
from the hammered module in order to restart data flow through the net-
work.

There is one restriction: you cannot hammer built-in modules. (These mod-
ules are part of the main AVS process.) For a list of built-in modules, see the
list in the "Remote Module Execution" section of the "Advanced Network Ed-
itor" chapter.

Module Restart Option

If a module dies while executing its module icon will turn black. Modules can
die for a variety of reasons, either because of a bug, because they got by AVS’s
data type checking and are trying to process incompatible data (usually oc-
curs with incompatible dimensions or extents), or the module runs out of
memory.

 Figure 6-14 Organization of the Network Control Panel

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-23

When a module dies, you get a message panel that informs you of the prob-
lem and gives you three options:

accept
This means that you accept that the module has died, and that you will
deal with this by "hammering" the dead module (discard it by dragging it
down to the Hammer icon in the Workspace). To get a new copy of the
module, drag its icon down from the Palette and reconnect it.

restart
The module will be restarted with its default parameter settings.

restart same
The module will be restarted with the same parameter setting. The net-
work will not re-execute until you have changed a parameter setting. This
gives you a chance to correct a parameter value that may be killing the
module.

There is also a Restart Module button on the Module Tools submenu. This
restarts a module with its default parameter settings. It is a way to get a fresh
instance of a module without hammering the old copy, then instancing a new
version from the palette and reconnecting it to the network.

Note: Multiple modules can be in the same process. If one of these modules
dies, all of the modules in the process also die, and turn black. Restart Mod-
ule will restart all current dead modules in sequence to try to get the same
modules running in the same process again.

Using Control Widgets

AVS has a variety of control widgets that allow you to specify module input
parameters: integers, floating point numbers, text strings, filenames, mutual-
ly-exclusive choices, non-mutually-exclusive choices, and colormaps. The fol-
lowing sections describe how to use the various types of control widgets.

Module writers can give control widgets conditional visibility. This means
that all of a module’s widgets may not be visible at a given time, and only be-
come visible if some condition is satisfied.

Using Type-In Controls

Figure 6-15 shows a typical type-in control widget.

To use a type-in, move the mouse cursor into the type-in area, so that it "lights
up". Then, type any printable characters, ending with Return. The existing
value, if any, is not replaced—you must explicitly erase it if you want to enter
a completely new value. There are two erasure keys:

Controlling the Execution of a Network

6-24 NETWORK EDITOR SUBSYSTEM

Backspace
Erases the last character currently in the type-in area.

Ctrl-U
Completely erases the type-in area.

There are two ways to finish the entry. You can press Return, or you can sim-
ply move the mouse cursor out of the typein area. AVS checks the new value
against the parameter’s bounds and type. In some cases, the value you type is
converted (e.g. decimal value converted to integer, out-of-bounds value con-
verted to allowable maximum), and the result of the conversion is displayed.

Using Dial Controls

Figure 6-17 shows a set of typical dial control widgets.

You can use a dial either by clicking or by dragging:

• If you click with any mouse button at a location along the edge of the dial,
the needle jumps immediately to that location and the current value indi-
cator changes accordingly.

• Alternatively, click and hold down any mouse button near the needle;
then use a circular motion to drag the needle either clockwise or counter-
clockwise. As you do so, the current value indicator changes. You can
drag the needle any amount, from just a few degrees to many complete
revolutions.
If a dial’s associated parameter has limits, attempting to drag the needle
to a value outside the parameter’s min-max bounds will fail—either the
needle stops moving when you reach the limit, or it "snaps back" to its
limit value.

 Figure 6-15 Type-In Control Widgets for Animated Float

 Figure 6-16 Default Values Replaced

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-25

The Dial Editor

Dial control widgets are special in that they have an associated control win-
dow called the Dial Editor (Figure 6-18). To pop up the Dial Editor, move the
cursor to the center of the dial, causing it to be highlighted. Then, click with
any mouse button.

You can use this window to specify an exact value for the parameter (which
may be easier than trying to move the dial needle by microscopic amounts).
You can also change the dial’s resolution (how much is once around) by typ-
ing in Minumum and Maximum values.

The Immediate button is a toggle switch. If you turn this feature on, the dial
continuously sends values when you drag the dial needle to a new position.
This causes the module that owns the widget to execute continuously, also.
(This may not be advisable for compute-intensive networks—changes to the
final output window may lag behind the movement of the needle.) In most
modules, Immediate is off by default.

Some dial widgets are conditionally visible. They may not appear if other
modules with overriding parameters are connected to the module.

Using dial widgets is quite intuitive. However, there are some subtleties to
their use that become evident when certain data value ranges interact with
some modules. These subtleties are explained below. You can probably skip
over the remaining paragraphs in this section, and only refer to them if you
find your dials behaving in a perplexing manner.

A module can declare a dial to be bounded or unbounded. It will declare it
bounded when it is confident that parameter values will almost always fall

 Figure 6-17 Dial Control Widgets

Controlling the Execution of a Network

6-26 NETWORK EDITOR SUBSYSTEM

within a certain range. It will declare it unbounded when it cannot predict a
parameter range, or when it wishes the parameter range to be data-depen-
dent (for example, based on the minimum and maximum data values in the
input field.) You can check the module’s man page to see how the module de-
fines each of its dial parameters.

In the "Dials" figure, resolution is a bounded dial. The title is specified by the
module. The module’s declared minimum and maximum allowable values
for the dial are shown at the lower left and lower right ends of the dial’s scale.
The current value for the dial appears at the top, beneath the title. The scale
(or resolution) of the dial is max-min/270 degrees. As you move the dial nee-
dle, the current value is updated correspondingly. You cannot move the nee-
dle past the minimum/maximum bounds. It will just stop. You cannot change
the dial’s minimum or maximum bound values. Bounded dials appear, for ex-
ample, as the radius multiplier factor for scatter dots spheres, as the number
of sample points for which to generate streamlines, or as the rotation of the
arbitrary slicer plane.

Unbounded dials are also common (distance, and high and low threshold in
the "Dials" figure.) Again, the title is specified by the module, and the dial’s
current value is displayed below the title. When an unbounded dial first ap-
pears, its indicator needle is always pointing straight up. The scale (or resolu-
tion) of the dial is always, initially, once around is 200. A module has no
control over the resolution of unbounded dials; there is no "normalize dial
resolution to data value range" function that the module can call.

 Figure 6-18 Dial Editor

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-27

In theory, you should be able to increment or decrement an unbounded dial’s
values indefinitely—just keep turning. However, a module may enforce data-
dependent minimum or maximum bounds on unbounded dials. If you move
the needle past the software-defined minimum or maximum, it will "snap
back" to the bound value.

Unbounded dials appear, for example, as the isosurface module’s level pa-
rameter, and as the thresholded slicer’s minimum and maximum threshold
values.

It sometimes happens that the module defines, for example, the minimum
field data value as the bounds for one dial, and the maximum field data value
as bounds for another dial. If the input field data happens to be floating point
values all falling between 0 and 1, and given that the default dial resolution is
once around is 200, the dials become too sensitive to use. Anything you try to
set just "snaps back."

In this case, you can use the Dial Editor to either type in specific values, or
you can manually change the resolution of the dial from its default Mini-
mum/Maximum of -100/100 to 0 and 1.

It also helps to hook up statistics, print field, and/or generate histogram/
graph viewer module(s) to your network. statistics tells you field minimum
and maximum data values; print field reports field minimum and maximum
extents; and generate histogram/graph viewer plots the distribution of data
in a field. All help you know the characteristics of your data and can illumi-
nate dial behavior.

Using Slider Controls

Figure 6-19 shows a typical slider control widget.

As with a dial, you can use a slider either by clicking or by dragging:

• If you click with any mouse button at a location along the slider, the
crosshair jumps immediately to that location and the current value indi-
cator changes accordingly.

• Alternatively, click and hold down any mouse button near the crosshair;
then drag it to the left or right. As you do so, the current value indicator
changes.

 Figure 6-19 Slider Control Widgets

Controlling the Execution of a Network

6-28 NETWORK EDITOR SUBSYSTEM

The parameter’s minimum and maximum values are displayed only while
you are adjusting the slider. Similarly, the slider’s name disappears while you
are adjusting it.

Using a Set of Choices (Radio Buttons)

Figure 6-20 shows a typical choice ("radio buttons") control widget, which al-
lows you to select from a mutually-exclusive set of choices.

A red ball and highlighting indicates which one of the choices is currently se-
lected. To select another choice, move the cursor anywhere within its box.
(The label inside the box "lights up" to indicate the cursor’s presence.) Then
click any mouse button to move the red ball to the new selection.

Using Toggle Controls

Figure 6-21 shows a toggle control widget, in the off state.

To change the state of a toggle switch, move the cursor anywhere within its
box. (The label inside the box "lights up" to indicate the cursor’s presence.)
Then click any mouse button.

Using Tristate Controls

Tristate control widgets are used for parameters that can assume three values,
not just two.

 Figure 6-20 Set of Radio Buttons

 Figure 6-21 Toggle Control Widget Off

 Figure 6-22 Toggle Widget On

 Figure 6-23 Tristate Widget

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-29

To change the state, move the cursor anywhere within its box. (The label in-
side the box "lights up" to indicate the cursor’s presence.) Then click any
mouse button. Successive clicks cycle the widget through its three states.

Using Oneshot Controls

Figure 6-24 shows a typical oneshot control widget. This type of control is
used to invoke a command, rather than to change the state of a parameter.

To use a oneshot control, move the cursor anywhere within its box. (The label
inside the box "lights up" to indicate the cursor’s presence.) Then click any
mouse button to make the box flash.

Using File Browser Controls

Figure 6-25 shows a typical file browser control widget.

The entries in a file browser are color-coded: black entries are files; red entries
are subdirectories (the topmost red entry is usually the parent directory). To
select one of the entries, click on it with any mouse button. Selecting a directo-
ry entry changes the working directory, causing filenames in that directory to
be displayed, along with the names of any subdirectories.

Since a directory might contain a large number of entries, a file browser has a
scroll bar along its right edge. Clicking inside the scroll bar makes additional
entries appear:

• The left mouse button scrolls upward.
• The effect of the middle button depends on exactly where the cursor is:

• In the arrow box at the top. Click to scroll the list to the very top.

 Figure 6-24 Oneshot Control Widget

 Figure 6-25 File Browser Control Widget

Controlling the Execution of a Network

6-30 NETWORK EDITOR SUBSYSTEM

• In the elevator shaft. Click and hold down the button to grab the ele-
vator bar. Moving the bar up or down causes the list to scroll accord-
ingly.

• In the arrow box at the bottom. Click to scroll the list to the very bot-
tom.

• The right mouse button scrolls downward.

A file browser has these buttons at the bottom:

New Dir
Pops up a dialog box in which you can type the name of another directory
(full pathname or path relative to the current directory). Be sure the
mouse cursor is within the dialog box (but not on the OK or Cancel but-
ton) before you start typing the directory name. When you click the OK
button in the dialog box (or press the Return key), the directory whose
name you’ve typed becomes current, and its filenames are displayed in
the browser window.

Should you inadvertently give a filename, it will select that filename as
though you had used New File and select the directory it is in.

Use Backspace to erase the last character or Ctrl-U to erase the entire
name. If you change your mind altogether, click the Cancel button.

New File
Pops up a dialog box that works the same way as the New Dir box. This
allows you to specify the file to be processed, either with a full pathname
or a name relative to the current directory. Should you give a directory
rather than a filename, it will change to the direcotry.

Close
(not always present) Some file browsers are "sticky"—they pop up in a
separate window and remain onscreen until you explicitly remove them
by clicking this button.

Other Browsers

These browsers have scrollbars that behave just like the file browser scroll-
bars. They serve slightly different purposes.

Choice Browser
Choice browsers look just like file browsers, except that the items dis-
played are not files. The Remote Host Browser described below, for exam-
ple, allows you to select an alternate host to run modules on. The Help
Demo browser is another choice browser.

Text Browsers
Text browsers produce scrolling windows of text. They are read-only; you
do not select items. The Show Module Documentation window is a text
browser.

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-31

Using the Colormap Control

Figure 6-26 shows the control widget that generates a colormap. You can also
use it to maintain a set of colormaps in disk files.

Translating numbers into colors is an important technique in scientific visual-
ization. The generate colormap module’s Colormap Editor widget is the pal-
ette you use to mix the colors. An AVS colormap is used by a number of
modules to translate numbers into to pixel values (i.e. colors). A colormap is
essentially a 256-line table, each line of which includes four fields: hue, satu-
ration, brightness, and an auxiliary field. The Colormap Editor widget allows
you to create a colormap table visually.

The widget has four "pages", one each for hue, saturation, value, and opacity
(the auxiliary field). You switch among the pages by clicking the radio but-
tons in the bottom left part of the control widget.

 Figure 6-26 Colormap Editor Widget

Controlling the Execution of a Network

6-32 NETWORK EDITOR SUBSYSTEM

Each page has the appearance of an area graph. It is actually a set of 256 very
thin horizontal bars. On the hue page, the length of the top bar specifies the
hue number for line 0 of the table. The color of this bar indicates the hue to
which a data value of 0 will be mapped. The next bar specifies both the hue
number for line 1 and the hue to which data values of 1 will be mapped; and
so on.

Initially, the hue numbers form a linear ramp. Smaller numbers will be
mapped into the blue part of the spectrum; larger numbers will be mapped
into the red part. To change the set of hue numbers:

• Place the cursor near the top (but within) the square containing the 256
horizontal bars.

• Press any mouse button and drag the cursor downward along the new
path. The lengths and colors of the horizontal bars change as you drag
downward. The new values are reported at the top of the control widget
as you drag.

The Colormap Editor widget’s additional controls are described below.

composite

The hue, saturation, and brightness "pages" of the Colormap Editor normally
show a graphical representation of just the hue, or just the saturation, or just
the brightness. Switching on composite displays the entire colormap, with
colors that accurately reflect the shade that the combined hue, saturation, and
brightness values will produce in the rendered image.

For example, with hue toggled, the default colormap page shows lower data
values mapping to a medium clear blue. If you then switch to saturation, you
could edit the saturation of this blue to be 50%, by drawing a line down the
middle of the editor page, producing a pale clear blue. But when you switch
back to the hue page, the color still shows as medium blue.

If you toggle composite, the true combined hue, saturation, and brightness
shade will appear—the actual pale clear blue.

Scrawled across the actual colormap will be a black line. This black line shows
the setting for the hue for that data value (if hue is toggled), or for saturation
(if saturation is toggled), or for the brightness (if brightness is toggled).

The composite colormap does not display opacity values; there being nothing
"behind" the colormap to obscure or reveal.

edit

The edit button raises another control panel (Figure 6-27) with additional col-
ormap editing features. Working from the top down:

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-33

Min
Max

The colormap editor uses the HSV color model. Hue is represented as a
circle. The default AVS colormap produces hues from 0 to 240 degrees
around this 360 degree circle; i.e., from red to blue. One third of the hue
spectrum (the magentas and blue-reds from 240 degrees to 359 degrees) is
normally excluded from the colormaps. The Min/Max typein controls let
you set the beginning and endpoints of the spectrum of hues in the color-
map. A Min/Max of 100 to 140 would produce 256 fine distinctions in
greens. Min/Max applies only to hues.

From/Value
To/Value

These typein controls give you precise numeric control over which color-
map slots map to which explicit hues. Rather than drawing curves in the
editor window freehand with a mouse, you type beginning and ending
slots in the colormap, and the range of hues, saturation, or brightness that
will be associated with them.

To make the typeins take effect, press do interpolation.

For example: you have a set of data values ranging from 0 to 200. The val-
ues from 160 to 165 are important and you want them to show up in a
contrasting color—not the evenly blended shade they would have with
the neighboring values. 160 would be the From value; 165 would be the

 Figure 6-27 Edit Panel

Controlling the Execution of a Network

6-34 NETWORK EDITOR SUBSYSTEM

To value. Pick any contrasting hue, saturation, or opacity—say bright red
(0.0), and enter it as both the from Value and the to Value, then press do
interpolate.

When you have byte data that ranges from 0 to 256, the mapping between
the data values and the colormap slots is easy to figure out. You can use
the field legend module, which takes both a colormap and a field as in-
put, to see how the numeric values are mapping onto the colormap.

invert
Reverses the mapping of the range 0..255 to color values. The 0th color be-
comes the 255th color, the 1st color becomes the 254th color, etc. Visually,
this flips the colormap over a horizontal axis.

flip
flip is like invert; it inverts the colormap for hue, saturation, brightness,
or opacity, whichever is selected. But, where invert inverts the colormap
about the horizontal axis, flip flips it about the vertical axis. New value =
(Max Colormap Value - Old Value).

cycle
cycle performs a "circular shift" on the colormap. How much the hues,
saturation, or brightness moves is set by the typein. The default is 1. Re-
peatedly pressing cycle repeatedly shifts the colormap.

For example, cycle can be used as a sort of pseudo contour generator for
volume data. Create a colormap with an opacity like a narrow square
wave - most values wholly transparent, with a narrow band wholly
opaque (you could use the From-To typeins). Setting a cycle step of 10,
then repeatedly pressing cycle would show the data as a series of pictures
0-10 data, 10-20 data, 20-30 data, etc.

ramp
ramp sets the hue, saturation, brightness, or opacity values in a colormap
to be an even graded interpolation between its minimum and maximum
values. This is the default for hue and opacity.

smooth
smooth "smooths out" the distribution of values in the hue, saturation,
brightness, or opacity of a colormap. Where the black hairline shows
spikey sudden changes, smooth produces curves. It performs a Gaussian
convolution on the colormap values.

Lo Value/High Value

These dials let you set the minimum and maximum values of your data.
These values are included in the generate colormap module’s output color-
map. Modules will use these values to normalize the range of the colormap to
the range of the data in the field. You can use these dials when your data’s
range of values is either not evenly distributed between 0 and 255 (for exam-
ple, your data is floating-point values from -1 to 1), or much of the data’s val-
ues lie outside the 0 to 255 range (for example, from 0 to 10,000). You can also

Controlling the Execution of a Network

NETWORK EDITOR SUBSYSTEM 6-35

use it if you want to "fan out" the colors representing a narrow range of data.
(To see what your data’s min/max values are, use the statistics module.)

Note: The color range module will calculate the minimum and maximum
data values in a field and store them in the output colormap. These dials are
the manual way of doing the same thing. They are also more flexible. For an
explanation of why this is a necessary option, see the color range module
man page in the AVS Module Reference Manual.

Set the Lo and High values either with the floating-point dials, or by clicking
the mouse on the dial’s center to bring up a floating-point typein.

Read/Write

These functions allow you to maintain a set of colormaps on disk. Clicking ei-
ther of these buttons brings up a file browser that allows you to specify a file
in which to store the current colormap (Write), or from which to reinstate a
previously-stored colormap (Read).

Organizing a Network’s Display Windows

In general, an AVS network produces one or more pictures as its output. (In
this section, we use the word "picture" to refer either to an image, produced by
converting data directly into pixels, or to a pixmap, produced by converting
data to a geometry which is then rendered.) Each picture is displayed in its
own display window (output window), although some pictures may combine
data from several data sets. This section describes the way in which AVS cre-
ates display windows, and the ways in which you can manipulate these win-
dows.

Whenever you drag a module icon from the Palette to the Workspace, AVS
adds the corresponding page of control widgets to the Network Control Panel
window. For modules whose output is an on-screen picture, AVS also creates
a display window. Initially, this window is empty. When you complete a net-
work and specify all the required input data, a picture appears in this win-
dow.

Complex networks may include several modules that produce pictures as
output. AVS creates a separate window for each such module.

Picture Size and Window Size

When a picture first appears in a display window, AVS automatically resizes
the window to fit the picture. (Since the size of the picture depends on the
data being visualized, AVS cannot calculate the appropriate window size be-
fore data flows through the network.) If the window size subsequently chang-
es, AVS automatically resizes the picture, if appropriate. In this connection, it
is important to keep in mind the difference between the output windows pro-
duced by the display image and display pixmap modules. (The image view-

Controlling the Execution of a Network

6-36 NETWORK EDITOR SUBSYSTEM

er and graph viewer modules have their own behavior, described in their
respective chapters.)

Images
An image is originally defined in terms of pixels. The only scaling AVS
performs on display image windows is successive doubling: x2, x4, x8,
etc. When you resize an image window, there are several possibilities:

• If you make the window exactly two times as large (or four times, or
eight times, etc.), the image is scaled and continues to fill the window
exactly.

• If you make the window any other size, the window will no longer fit
the image exactly. Only part of the image will be visible; to see more
of it, use any mouse button to click-and-drag the image. Alternative-
ly, use the scroll bars that appear along the window edges. They work
the same way here as in a File Browser:

• The left mouse button scrolls upward.
• The effect of the middle button depends on exactly where the

cursor is:
• In the arrow box at the top (or left). Click to scroll to the

very top or left of the image.
• In the elevator shaft. Click and hold down the button to

grab the elevator bar. Moving the bar causes the image to
scroll accordingly.

• In the arrow box at the bottom or right. Click to scroll to the
very bottom or right of the image.

• The right mouse button scrolls downward.

Pixmaps
In most cases, a pixmap is generated by the render geometry module. AVS
can scale pixmaps continuously. When you resize a pixmap window, the
picture always resizes accordingly by re-rendering at the new resolution.

Using the Window Manager

All display windows are initially created as "top-level" X windows. This
means that you can manipulate them using the X Window System’s window
manager program—move, iconify, resize, raise, lower, etc.

If you use the Edit layout function of the Network Editor to reorganize a net-
work’s control widgets, you may want to include the network’s display win-
dows in the reorganization. This topic is discussed in section "Including
Display Windows in a Reorganized Layout" below.

Note: Don’t use the xkill(1) program or any other means to delete an AVS dis-
play window or any other AVS window. This will cause the network to hang.

Using the Network Editor Menu System

NETWORK EDITOR SUBSYSTEM 6-37

Using a Display Window’s Pulldown Menu

Each display window has a pulldown menu that allows you to resize the win-
dow’s picture without having to use the X Window System window manager.
To use the menu, click and hold down any mouse button on the small square
at the left side of the windows title bar. Drag the mouse to highlight the de-
sired menu choice, then release the button.

The menu choices vary from module to module. display pixmap has only the
first two options, display image has all of the following menu choices:

Zoom Full Screen
Enlarges the display window to be (approximately) the largest possible
square size. An image is scaled up accordingly; a pixmap is re-rendered.

Unzoom
Restores a zoomed window to its former size. If you use the window
manager to move and/or resize a zoomed window, AVS continues to re-
member the previous configuration as the unzoomed position and size. If
the window had been moved inside a page or stack using the Layout Edi-
tor (described later), it returns to that location.

Auto-Fit (Turn On/Off)
This toggle switch controls the automatic sizing of display windows to
exactly fit the current image size. By default, this feature is enabled.

Scrollbars (Turn On/Off)
When an image is larger than its display window, AVS automatically
adds scrollbars unless you turn this toggle switch off. You can configure
AVS not to use scrollbars by default: use the ImageScrollbars parameter
in the AVS startup file (see Chapter 2).

Resize Window to Fit Image
Use this choice when Auto-Fit is turned off and an image is too big for its
window. (If you don’t use this function, you can scroll the image in order
to see different parts of it.) This choice is also useful when AVS has re-
fused to scale up an image (as described above), and you want to trim off
the unused portion of the display window.

x1, x2, x4, etc.
Scales the image by a power of 2. The "(selected)" annotation indicates the
scaling currently in use.

Using the Network Editor Menu System

The Network Editor has a two-level menu of functions that support your
work in creating, revising, and executing networks. The top-level menu is al-
ways visible in the upper-left part of the Network Construction window (Fig-

Using the Network Editor Menu System

6-38 NETWORK EDITOR SUBSYSTEM

ure 6-28). At any moment, one of the menu choices is selected, and the
corresponding submenu appears below the main menu.

The following sections describe the functions in the Network Editor sub-
menus. Whatever submenu is currently active, the following two buttons al-
ways appear near the upper-left corner of the Network Construction window:

Help
Pops up a help browser window and displays the contents of the net-
work_editor.txt help file. This file provides an overview of Network Editor
usage. The browser shows the additional help topics that relate to the
Network Editor.

Close
Closes the Network Construction Window, but does not delete the current
network, if any. In fact, if a network is currently executing, it will continue
to do so even though the Network Editor windows are closed.

A Display Network Editor button automatically appears at the top of the
Network Control Panel window, providing a way to reopen the Network
Construction Window at a later time.

 Figure 6-28 Network Editor Main Menu

Using the Network Editor Menu System

NETWORK EDITOR SUBSYSTEM 6-39

Network Tools

Read Network
Reads an existing network from disk storage into the workspace. A file
browser widget appears to help you specify the file containing the net-
work definition.

If there is already a network (or even just a single module) in the Work-
space, you must choose whether to Clear the existing network or to
Merge the new one with the existing one. Merging can cause the module
icons to overlap in the Workspace—use the left mouse button to rear-
range them afterward.

Write Network
Writes the current network to disk storage. If you have already specified a
filename for the current network with Read Network or Write Network,
AVS offers to use the same name. If you choose not to, a file browser ap-
pears to help you specify the filename.

Note that performing a Read Network with the Merge does not change
the name of the current network. You must select the Clear option to ef-
fect the name change or choose a new name when writing the network.

Write Network saves networks in Command Language Interpreter (CLI)
instructions (See the "Command Language Interpreter" chapter in the
AVS Developer’s Guide.) It saves the state of the network to the extent that
its CLI instructions allow. In general, Write Network saves:

• All the modules that have been placed in the workspace, and all of
the connections between them. (CLI net_show command.)

• The current state of all module parameter settings that have been
changed from their default values. This includes the names of files
that have been read into the network. (CLI parm_save command.)

If you wish to save all parameters, not just those which have changed,
you must use the NetWriteAllParms keyword in your .avsrc file.
• The current state of the layout of the screen, including all changes

made to widgets using the Layout Editor and the Parameter Editor
(such as changing dials to sliders), and the current location of all dis-
play windows. (CLI layout command.)

Write Network does not save the current state of any of the viewers (Ge-
ometry Viewer, Image Viewer, Graph Viewer). Rather, it gives the viewers
a chance to save their own state. Each does so in different measure.

The Geometry Viewer saves its state using the Geometry Viewer CLI
commands (see the "Command Language Interpreter" chapter in the AVS
Developer’s Guide). All camera, light, object, and transformation state is
saved in this way.

To avoid saving large quantities of geometric data, the Geometry Viewer
saves only the attributes of the objects saved in the scene. If there exists an
up-to-date description of the geometry of any particular object already in
a "geom" file, the Geometry Viewer will try to read the geometry data

Using the Network Editor Menu System

6-40 NETWORK EDITOR SUBSYSTEM

from the file when reading in the network. The Geometry Viewer knows
that geometry is up-to-date if either it was read in directly from the Ge-
ometry Viewer Read Object menu or the object’s geometry was saved
since the last time it was modified with either the Save Scene or Save Ob-
ject Geometry Viewer commands.

It is often the case that modules will immediately regenerate the geome-
try for all of the objects that they’ve produced in a particular network.

When saving references to AVS executables, Write Network always pref-
aces the binary filename with $PATH. $PATH usually resolves to /usr/avs.
When saving references to data files or network files, Write Network by
default saves absolute path names to the files. It is possible to get Write
Network to substitute the $DataDirectory and $NetDir strings (if you
have defined them) if you use NetWriteAbsPath off in your .avsrc file.
Pathways to remote modules and remote data directories are always
saved as $RemMods and $RemData, no matter how NetWriteAbsPath is
set.

The network files are editable ASCII CLI files.

Clear Network
Deletes the current network and associated control panels. AVS displays a
dialog box to have you confirm the selection.

Print Network
Creates a PostScript file named /tmp/AVSnetPID.ps (where PID is the pro-
cess number), which shows the layout of the current network. AVS com-
poses a shell command to print the file, then displays a pop-up window
showing this command. You must choose whether or not to issue the
print command. (If you choose not to print, you may want to copy the
PostScript file to another location, using an xterm window. The next time
you select Print Network, the PostScript file will be overwritten.

The default command is lpr. You can set this to be something else using
the PrintNetwork .avsrc keyword. (See the "Starting AVS" chapter.)

Disable Flow Executive (toggle)
Modules perform their computations under the control of the Flow Exec-
utive, which determines when their output is required by another mod-
ule and reexecutes them if their most recent computation has become out
of date. Disabling the Flow Executive inhibits all network execution. This
is useful when you wish to change the values of several parameters, but
you don’t wish to have the network’s modules recompute after each
change.

Save Parameters
Saves the current module parameter values for the current network in a
parameters file, named /tmp/avs_snapN.PID. (PID is the process number,
and N an internal sequence number. This is useful if you want to provide
yourself a checkpoint, to which you can return later in the same Network
Editor session.

Using the Network Editor Menu System

NETWORK EDITOR SUBSYSTEM 6-41

Restore Parameters
Resets the network’s parameter values to those most recently saved. If ap-
propriate (and if the Flow Executive is not disabled), the network recom-
putes. You cannot retrieve the parameters of another network, or of the
same network from a previous Network Editor session.

Module Tools

Read Module(s)
Adds a module to one of the categories in the Palette. A file browser wid-
get appears to help you specify the module program file. Each module
specifies its category; you cannot choose a particular category when in-
voking this function.

It is possible for a single program file to define several modules. In this
case, all the modules defined in the file are added to the Palette. You can
also specify a directory, in which case the Network Editor loads all the
modules defined in module program files within that directory.

Read Remote Module(s)
This brings up a Remote Host Browser that lets you select another system
in your network from which to read and execute modules. The remote
host might be a very powerful number cruncher, and the remote module
a simulation that executes on this heterogeneous host sending its data to
AVS on your workstation for visualization. This is a large topic covered in

 Figure 6-29 Module Tools Menu

Using the Network Editor Menu System

6-42 NETWORK EDITOR SUBSYSTEM

its own "Remote Module Execution" section in the "Advanced Network
Editor" chapter.

Read Module Library
Loads the Module Palette with all the modules in a specified module li-
brary, replacing the existing library in the Palette. A file browser widget
appears to help you specify the library file to be read. After the library is
loaded, the title bar above the Palette changes to display the name of the
new library. The existing module library is still accessible through the Se-
lect Module Library browser.

A library file names some combination of AVS-supplied modules, user-
written modules, and directories that contain modules. For example:

builtin geometry viewer
builtin read geometry
builtin display pixmap
file /usr/johnp/avs_modules/smooth
file /usr/johnp/avs_modules/rough
directory /usr/johnp/avs_modules/tools_dir

For details on creating module libraries see the "Constructing a Module
Library" section in the "Advanced Network Editor" chapter.

Select Module Library
This panel duplicates the function of the module library icons across the
top of the module Palette. It invokes a choice browser, allowing you to
select one module library from all the ones that have already been select-
ed with Read Module Library during the current Network Editor ses-
sion. The default library—the one automatically loaded at the beginning
of the session—is listed, too.

Edit Module Library
A facility for interactively editing and creating module libraries. This is
discussed under "Constructing a Module Library" in the "Advanced Net-
work Editor" chapter.

Flash Active Modules (toggle)
If this toggle switch is on, module icons are highlighted (displayed with a
black background) as the modules execute. Turning this off may speed up
the execution of highly interactive networks. It is on by default.

Verbose Mode (toggle)
If this toggle switch is on, AVS displays debugging information as the
modules execute. The information is sent to the stderr of the avs com-
mand that started the AVS session. Typically, the information is displayed
in the terminal emulator window from which you typed the avs com-
mand.

Restart Modules
Brings up a panel that gives options for restarting modules that have
died. Selecting Restart restarts all "blacked out" modules with their de-

Using the Network Editor Menu System

NETWORK EDITOR SUBSYSTEM 6-43

fault parameter settings. Restart also will throw away an instance of a
module and instance a fresh copy without requiring you to go through
the usual user interface steps to accomplish this. Restart Same restarts all
blacked-out modules with the same parameter settings. (This may well
kill the module(s) again.)

Editing Tools

The Editing Tools menu controls two Network Editor operations: network
editing operations such as copying, cutting, and pasting groups of modules;
and macro module editing operations. The Editing Tools menu and network
editing operations are described in the "Advanced Network Editor" chapter.

Layout Editor

The AVS Layout Editor has been called one of the best, but least-known AVS
features. Selecting Layout Editor places the Network Editor in a mode that al-
lows you to "redesign" the user interface of an AVS network. You can, for ex-
ample, place widgets outside the Network Editor control panel to use screen
space more effectively. The Layout Editor is described in the "Advanced Net-
work Editor" chapter.

 Figure 6-30 Editing Tools Menu

Using the Network Editor Menu System

6-44 NETWORK EDITOR SUBSYSTEM

 Figure 6-31 Layout Editor Menu

GRAPH VIEWER SUBSYSTEM 7-1

CHAPTER 7 GRAPH
VIEWER
SUBSYSTEM

Introduction

The AVS Graph Viewer subsystem is an interactive tool for creating XY linear
or contour plots of data.

XY linear plots can be displayed as a line plot, area plot, scatter plot, or bar
plot. Contour plots are displayed as 2D graphs of lines connecting data points
with the same level (numeric) value. The graphs can be annotated with a title,
legends, and axes labels in various font styles and colors. You also have con-
trol over the placement and style of axis tic marks.

The Graph Viewer exists in two forms: it exists as the Graph Viewer sub-
system accessible from the main AVS menu, and it exists as the graph viewer
module in the Network Editor’s module Palette.

You can view graphs of multiple datasets within the same window, the same
dataset in different windows (such as a line plot showing trends and a scatter
plot showing groupings), or different datasets in separate windows.

The Graph Viewer accepts one or two-dimensional data as input. The input
data can be either an ASCII file in a particular format, or an AVS field. In addi-
tion, the Graph Viewer will read in an AVS .x image file and use it as a back-

 Figure 7-1 AVS Graph Viewer Button on Main AVS Menu

 Figure 7-2 Graph Viewer Module in the Network Editor

Entering the Graph Viewer

7-2 GRAPH VIEWER SUBSYSTEM

drop for its plots; and it can re-generate plots saved from an earlier Graph
Viewer session in an AVS Plot file.

Data can enter the Graph Viewer in two ways: ASCII data files, AVS fields
(and the non-data AVS Plot and .x AVS image files) can be read using the
Graph Viewer’s Read Data function. AVS fields (and non-data .x AVS image
files) can flow into the graph viewer module from an AVS network.

The Graph Viewer will interpret the input data it receives as either a series of
Y values to be plotted against a set of constantly-spaced X axis intervals that
the Graph Viewer generates automatically (Plot as Y Data); as a series of XY
values to be plotted against Y and X axes that are automatically generated to
match the range of the input data (Plot as XY Data); or it will interpret the in-
put data as a 2D array through which it will draw contour lines connecting
the same level values (Plot as Contour Data).

You can save plots as ASCII data, AVS Plot-format, AVS Geometry, and Post-
Script files. The graph viewer module will output an AVS geometry or an
AVS image. The AVS image can be converted into a PostScript file with the
image to postscript module.

The Graph Viewer is used for viewing data; it cannot be used to alter data.

There are sample ASCII plot data files in /usr/avs/data/graph. The AVS Demo
suite, accessible from the main AVS Applications menu, illustrates Graph
Viewer usage.

Entering the Graph Viewer

The Graph Viewer subsystem can be started using one of the following meth-
ods:

From the shell directly
The following command line starts the Graph Viewer automatically when
you begin the AVS program:

 avs -graph

To exit the Graph Viewer, press the Exit button at the top of the Graph
Viewer control panel. See the "Starting AVS" chapter for additional com-
mand-line options that affect how the Graph Viewer is started.

From the main menu
You can start the Graph Viewer at the AVS main menu by moving the
mouse pointer to the Graph Viewer menu item and clicking any mouse
button.

Data Viewers
At the top of each subsystem control panel is a Data Viewers button.
Pressing this button creates a pop-up menu listing the AVS subsystems.

Graph Viewer—Basic Interface

GRAPH VIEWER SUBSYSTEM 7-3

While still holding the mouse button down, roll the mouse cursor down
to Graph Viewer and release. This raises the Graph Viewer control panel.
You may wish to use your window manager to move the Graph Viewer
control panel to another part of the screen so that other subsystem control
panels are also visible.

In a network
You can include the graph viewer module in an AVS network.

Graph Viewer—Basic Interface

The Option Selection menu (Figure 7-3) at the top of the Graph Viewer control
panel provides access to the basic operations for creating a plot.

The following top-level menu choices are always visible in the Option Selec-
tion menu area:

• Read Data—select the input file type (File Type menu); select how to in-
terpret the input data (Data Format menu); select whether the new plot
will replace the existing plot, be added to the plot, or be plotted in an en-
tirely new window (Plot Control menu); select the type of linear plot to
make, or the number and level of contours; and Delete Plot Windows.

• Write Data—write the current plot window as one of the four output file
types.

• Axis Display—control the border accents; the number, type, and place-
ment of axis tick marks; the axis range, and the axis type (e.g., logarithmic
or linear).

• Titles, Labels &Legends—create titles for each plot window, labels for
the individual X and Y axes, and legends for the plot lines.

• Select Plot—control the type of plot (line, scatter, etc.), as well as the ap-
pearance of individual lines within the plot (dotted, dashed, thickness,
color).

 Figure 7-3 Graph Viewer Main Menu

Read Data

7-4 GRAPH VIEWER SUBSYSTEM

One of these choices is always selected. The area below the Option Selection
menu changes depending on which choice is currently selected.

Using the Graph Viewer

Using the Graph Viewer consists of four steps:

1. Input the data you want to view. You need to select the input file
type (ASCII, AVS field, etc.) and the data format (Plot as Y Data,
Plot as Contour Data, etc.) you want to use.

2. If you are creating a linear plot, choose the type of plot (line, area,
scatter, bar). If you are creating a contour plot, set the number, val-
ue, and range of the contour levels.

3. If you wish, edit the plot axes, titles, labels, and style of the plot
lines.

4. If you want to save the output, you then select the file type you
want to save or print.

Multiple Plot Windows—The Current Window

You can create and delete plot windows at any time. This provides the ability
to display the same dataset in different windows and work with each one in-
dependently, or to display completely separate datasets in different windows
for comparison.

For example, Figure 7-4 shows three plot windows. The first window has a
contour plot of one 2D slice through the center of a 3D field dataset. The sec-
ond window is a bar plot of a 1D section through the middle of the same 2D
slice. The third is a line plot of another 1D section through a different part of
the same 2D slice.

Each window contains one or more plots and can be labeled with its own title,
X and Y axis labels, and tick marks. These identifiers can be altered in size,
style, color, and position at any time.

Every plot window has complete X Window System capabilities.

One of these plot windows is the current plot window that will be affected by
all menu operations. The current plot window is indicated by a red border.
You can change the current plot window by moving the mouse cursor into
any plot window, then pressing any mouse button.

Read Data

The Graph Viewer accepts an ASCII file or an AVS field as input and uses the
numerical data to generate a plot. It also accepts two other input file types

Read Data

GRAPH VIEWER SUBSYSTEM 7-5

that are not plotted as data—AVS Plot files and AVS image files. The menu of
choices appears under the Read Data main menu button (Figure 7-5).

File Type Submenu

The Graph Viewer accepts the following data file types as input:

Read ASCII File
These are ASCII files with numeric data arranged in one or more col-
umns. The data can be specified as integers, real numbers, or in floating
point scientific notation style. You can read in any file by typing its name
into the Read Data’s New File type in panel. However, for a file to show
up in Read Data’s file browser window, it must have the file suffix .dat.

The file can contain only numerical data as input. Non-numerical data in
the file must be preceded by the pound sign (#) character in the first col-
umn.

ASCII files can only be read into the Graph Viewer through the Read
Data function; they cannot enter the graph viewer module through an in-
put port.

The Graph Viewer’s assumption about ASCII data files is that they are ba-
sically tabular, that is, tables of columns of numbers. One column might
be pressure, or density, or temperature; another column might be time, a
Richter scale value, or daily rainfall, etc. You can select any one column to
plot (such as pressure), or you can select any column and plot it against

 Figure 7-4 Multiple Plot Windows

Read Data

7-6 GRAPH VIEWER SUBSYSTEM

 Figure 7-5 Read Data Submenu

Read Data

GRAPH VIEWER SUBSYSTEM 7-7

any other (pressure against time). For example, here is the sample ASCII
data file /usr/avs/data/graph/growth.dat:

0 0 1
10 20 1
30 30 2
80 50 3
90 20 4
95 80 5

Choosing Read ASCII File causes the Data Format menu described be-
low to appear.

Read AVS Field File
The Graph Viewer accepts AVS fields of any dimension, of any vector
length, and of any coordinate type (uniform, rectilinear, irregular).

However:

• If the field is 3D or greater, the Graph Viewer will, by default, use just
the first XY 2D "slice" of the field. (The Graph Viewer does not create
three-dimensional graphs.)

• If the field has a vector of data at each point, the Graph Viewer will
graph just the first element of the vector.

• Uniform and rectilinear fields will be plotted on a corresponding
grid, preserving the original spatial relationship of the data. Irregular
(curvilinear) data will be plotted on a corresponding grid if the input
field is 2D (ndim=2) and 2 space (nspace=2). Otherwise, irregular
data is plotted on a uniform grid.

• For a field file to show in Read Data’s file browser, it must have the
file suffix .fld. You can read in any field file without this suffix using
the file browser’s New File typein panel.

Choosing Read AVS Field File causes the Data Format menu described
below to appear.

It is more typical to graph field data entering the Graph Viewer through a
network rather than reading the field data iVn through this Read AVS
Field File function.

AVS fields enter the graph viewer module through either its rightmost or
center input ports. By default the rightmost port assumes you wish to
make a linear plot, and the center port assumes you want to make a con-
tour plot; but either can be changed from the Graph Viewer interface.

Because the Graph Viewer will, by default, plot just the first XY plane of a
3D field, you should use one or more ortholognal slicer modules in the
network to pare down the field to a dimensionality that is meaningful to
the Graph Viewer, and that contains just the data you want to graph. (The
crop module can also be used.) To turn a 2D AVS field into a 1D field or to
turn a 3D field into a 2D field use a network like the following:

Read Data

7-8 GRAPH VIEWER SUBSYSTEM

 a module that outputs a field
 |
 |
 ORTHOGONAL SLICER
 |
 |
 GRAPH VIEWER

Use the orthogonal slicer’s controls to pick the column or plane of the
field you want to graph. This is how, for example you would create a 2D
slice of a 3D scatter data field that the Graph Viewer could then use to
make a contour plot.

If you have a 3D field that you want to plot as a 1D Plot as Y Data opera-
tion, use two orthogonal slicer modules in succession:

 a module that outputs a field
 |
 |
 ORTHOGONAL SLICER
 |
 |
 ORTHOGONAL SLICER
 |
 |
 GRAPH VIEWER

If the field contains vector data, you should use the extract scalar module
to isolate the vector element that you want to graph. (The Graph Viewer
graphs just the first vector element in a field.) This could come before or
after any orthogonal slicer modules.

The Graph Viewer also accepts the following two non-data input files:

Read AVS Plot File
AVS Plot files are files that you have already created with the Graph
Viewer, and saved with the Write Data and AVS Plot Data buttons. The
plot file does not contain numeric data. Rather, it contains the instructions
for re-drawing a Graph Viewer window, with plot lines, axes, titles and
axis labels exactly as they were originally saved.

For a plot file to show in Read Data’s file browser, it must have the file
suffix .plt. You can read in any plot file without this suffix using the file
browser’s New File typein panel.

Note: These files create a new window when selected—they cannot be
read into an existing window.

Read X Image File
The Graph Viewer uses the term X Image File to mean an AVS image
datatype file with the .x suffix. The Graph Viewer uses the image file as a
backdrop to its plotting field. Image files can be read in with Read Data.
They can also enter the graph viewer module through its leftmost input
port.

Read Data

GRAPH VIEWER SUBSYSTEM 7-9

When an image enters the Graph Viewer, the plot window is resized to fit
the image.

For an image file to show in Read Data’s file browser, it must have the file
suffix .x. You can read in any image file without this suffix using the file
browser’s New File typein panel.

Plot Control Submenu

The Plot Control Submenu selects among three methods for reading plot data
into the plot window. You should establish your choice before you read in the
data file through the file browser, and before the upstream module sends its
AVS field or image to the graph viewer module.

Replace Current Plot
This selection replaces all of the plots in the current plot window with a
new plot dataset.

Add to Current Plot
This selection is used when the you want to read in a new plot dataset
and add it to the current plot window. This allows you to display multi-
ple plots in the same plot window. You can quickly compare several
datasets within a single window using the same axis and tick values.

You can also mix plot styles within the same window — for example,
dataset A as an area plot and dataset B as a scatter plot. Because a dataset
plot style can be changed at any time, you can start with the same plot
styles and change one window plot, or start with dissimilar plot styles.

Each dataset read into a window as input is automatically assigned a dif-
ferent color. You can change its plot characteristics (line type, scatter char-
acter, color) at any time.

For example,Figure 7-6 shows three plots in one window: a scatter plot
where points are represented by the letter "A," a bar plot, and an area plot.
Because the plots are within the same window and use the same axis val-
ues, their comparison is easy.

The axis and tick values of a window plot are always updated to reflect
the largest dataset read into the window, unless Normalize Plot Data (be-
low) is deselected.

Create New Plot
This selection creates a new plot window.

Normalize Plot Data
This switch controls whether a plot’s dimensions change when new data
enters the Graph Viewer.

When the Normalize Plot Data button is on (the default), the Graph
Viewer automatically normalizes the plot dimensions. For example, if
the plot’s x-axis range was (0.0, 100.0) and you read in a dataset with an x
range of (0.0, 200.0), the plot’s x-axis is automatically resized to (0.0,

Read Data

7-10 GRAPH VIEWER SUBSYSTEM

200.0). When Normalize Plot Data is off, the plot dimensions do not
change when a new dataset is read into the Graph Viewer.

In practical use, you will want to normalize your data whenever you are
not sure of the range of the data, or if you want to make sure that the en-
tire dataset is visible within the plot area.

You would not want your data normalized in situations such as a strip
chart. For example, if you had a network that is monitoring an instru-
ment such as an EKG, you would not want the plot’s dimensions to be
normalized each time the plot is updated with a new data value.

Data Formats Submenu

Once you have selected an input file type (ASCII, etc.), then the Data Format
submenu and the file browser widget appear.

There are three different ways for the Graph Viewer to map its input data into
a plot. You select the technique from the following set of radio buttons:

 Figure 7-6 Adding New Plots

Read Data

GRAPH VIEWER SUBSYSTEM 7-11

Plot as Y Data

Directs the Graph Viewer to use one column of the input data as a series of Y
values. If the input data is a 2D field, it is viewed as a two-dimensional array,
where each X value (X=1, X=2, etc.) is a column of Y values. By default, col-
umn one of either an ASCII file or AVS field will be used. The X Axis for the
graph is generated automatically. The Graph Viewer counts the number of
data items in the Y Axis column and places the same number of items on the
X Axis in intervals of 10. You can change which column of the input data is
used.

X Axis Intervals
Sets the interval range between item counts on the X Axis. You can
change the interval range at any time.

Y Axis Column
Selects which column of the input data to use as Y values. You must select
the data column before inputting the file.

To change the input column after reading in the file you must delete the
dataset (see Delete Plot Dataset in Select Plot) or delete the window (see
Delete Plot Window), then reselect the file for input with the input col-
umn you want.

 Figure 7-7 Plot as Y Menu

Read Data

7-12 GRAPH VIEWER SUBSYSTEM

If you type in an invalid column number, the Graph Viewer displays a
message showing how many columns are available. Repeat the steps to
select a valid column number for input.

Color Column
You can also use column data to control line segment color (see "Using
Column Data For Color Control" below).

Plot Styles
You can select Simple Line, Area, Scatter and Bar plot styles for display-
ing the data. The default setting is Simple Line. You must select the plot
style prior to reading the file. To change the plot style after you have read
the file see "Select Plot."

Plot as XY Data

Directs the Graph Viewer to use two columns of the input as a pair of X,Y
data values to be plotted against correspondingly scaled X and Y axes. By de-

 Figure 7-8 Example of Plotting as Y Data

Read Data

GRAPH VIEWER SUBSYSTEM 7-13

fault, the Graph Viewer uses column one as the X Axis values and column
two as the Y Axis values. You can change the input columns as follows:

X Axis Column
Selects which column of the input file or field to use as the X values. You
must select the data column before inputting the file.

Y Axis Column
Selects which column of the input file or field to use as the Y values. You
must select the data column before inputting the file.

If you need to change the X Axis or Y Axis input column after reading in
the file you must delete the dataset (see "Delete Plot Dataset" in "Select
Plot") or delete the window (see Delete Plot Window), then reselect the
file for input with the input columns you want.

If you type in an incorrect column number the Graph Viewer displays a
message showing how many columns are available. Repeat the steps to
select a valid column number for input.

Color Column
You can also use column data to control line segment color (see "Using
Column Data For Color Control").

 Figure 7-9 Plot as XY Data Menu

Read Data

7-14 GRAPH VIEWER SUBSYSTEM

Plot Styles
You can select Simple Line, Area, Scatter and Bar plot styles for display-
ing the selected data. The default setting is Simple Line. You must select
the plot style prior to reading the file. To change the plot style after you
have read the file see Select Plot.

Note: It does not usually make much sense to plot typical AVS field data as
Plot as XY Data. You would essentially be plotting one column of X, Y, or Z
values against another column of the same data—X1Y1 against X2Y1, X1Y2
against X2Y2, etc.). One could write a module that constructs an output field
where this operation was meaningful, but no supplied modules do this.

Plot as Contour Data

Directs the Graph Viewer to use all columns of the input data to construct a
2D contour plot. By default, each contour level is displayed as a different col-
or. You can also select monochrome contour mapping to assign all levels the
same color. The number of contour levels and coloring can be changed at any
time.

 Figure 7-10 Example of Plotting as XY Data

Read Data

GRAPH VIEWER SUBSYSTEM 7-15

If you want to make a contour plot of a 3D field, remember that the Graph
Viewer plots only the first XY plane of field. Use the orthogonal slicer module
in a network to select the 2D planar slice of the data from which to create the
contour plot.

Note: because of the complexity of contour plot data, the computing and dis-
play time can be significant. Be aware of the size of your input data, and the
number of levels you are trying to plot. If necessary, you can use the down-
size module to "thin out" AVS field data before it enters the graph viewer
module, and the Value Range or User Specified controls listed below to keep
the number of levels reasonable.

Color Selection

There are two options for color selection of contour plots.

Monochrome
Displays all contour levels of the plot in the same color.

Hue Range
Displays each contour level of the plot in a different color. This is the de-
fault. The range is not user-selectable.

 Figure 7-11 Plot as Contour Data Menu

Read Data

7-16 GRAPH VIEWER SUBSYSTEM

Contour Level Selection

You specify the number of contour levels. The range of data (from low to
high) is divided into evenly spaced contour levels. Data occurring on each
contour level is assigned a color and plotted.

For example, data containing values from 0 to 90 can be assigned 10 contour
levels. The contour levels are evenly divided between the low value and the
high value (inclusive with the high value). Therefore the contour levels are
placed at the following values: 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90. It should
be noted that contour lines will not be generated at a dataset’s minimum (0)
and maximum values (90).

If you are not sure what the range of your AVS field data actually is, you can
find out with modules such as statistics and generate histogram. statistics
produces an ASCII output widget showing the data minimum and maximum
values; and generate histogram produces a 1D field profiling the distribution
of data values in a field that is meant to be displayed with the graph viewer
module.

There are three Contour Level Selection options:

Automatic
Divides the entire range of values into evenly spaced contour levels. In
this case, you only specify the number of contour levels you want. It
should be noted that the minimum contour value will not be the mini-
mum value of the dataset. It will be a value greater than the minimum
value. This ensures that a contour line is drawn. Also, the maximum val-
ue will not be the maximum value of the dataset. It will be a value less
than the maximum value.

Value Range
Selects a range between a low number and a high number and divide the
range into contour levels. For example, you can read a file ranging from 1
to 50 but specify a starting value of 10 and ending value of 40. Only val-
ues occurring between these points (inclusive) are permitted. Then this
range is evenly divided into the number of contour levels you specify.
Only data points occurring on the contour levels are plotted.

User Specified
Explicitly states the contour values to be plotted. See the figure below. For
example, you can read a file ranging from 0 to 500, then specify the con-
tour levels of 26, 48, 89, 150, 223, 415, 487 and 499. Only data points occur-
ring at these levels are plotted.

Using Column Data for Color Control

Color control enables you to select the colors used for displaying line seg-
ments. You need to choose an input column of data values to control the line
segment colors.

Read Data

GRAPH VIEWER SUBSYSTEM 7-17

A data value of one tells the Graph Viewer to use color one, a data value of
two means use color two, and so on.

Note: A value of 0 means no color displayed.

For example, if Column Y has three data items (Y1, Y2, Y3) and Column X has
three items (X1, X2 ,X3), then Column C items (C1, C2, C3) can control the col-
ors used to connect line segments Y1-Y2 and Y2-Y3.

There are three data values in Column C, but only two (C2 and C3) are actual-
ly used for line colors. The first data value of the color control column is al-
ways ignored and reset to zero.

Color control values range from 0 to 499 to control Hue color. If your color
control data value is greater than the number of available colors, the data val-
ue is wrapped around to the beginning color.

 Figure 7-12 Example of Plotting as Contour Data

Write Data

7-18 GRAPH VIEWER SUBSYSTEM

For example, a value of 500 wraps around to 0, 501 wraps to 1, 502 wraps to 2,
and so on...

Decimal values are rounded to the nearest integer. Values between one and
zero are rounded to either one (color one) or zero (no color).

Plot Styles Submenu

The Graph Viewer provides four styles of plots for viewing linear data (see
Figure 7-13). You can change from one style of plot to another at any time. You
can display different plot styles within the same window. The plot styles are:

Line plots

Line plots connect data points with lines so that you can easily see changes or
trends within your data. You can change the type of line (e.g. solid, dashes),
its thickness and color at any time.

Area plots

Area plots fill in the data points with solid color so that similar and dissimilar
data points are easily viewed. You can change the color of the filled area at
any time.

Scatter plots

Scatter plots show the data points as a character (e.g., an asterisk) so that
groupings of data can be easily seen. You can change the character type, style,
size and color at any time.

Bar plots

Bar plots display data in vertical bars so that you can easily compare data val-
ues. You can change the color of the bars at any time.

Delete Plot Window

Deletes the active display window. There is no request for confirmation—
once a window is deleted its display is gone.

Write Data

Saves the selected plot data for later retrieval or printing. Selecting this menu
item causes the File Type menu to appear.

Write Data

GRAPH VIEWER SUBSYSTEM 7-19

File Type Submenu

You can select the following file types for output:

Write ASCII XY Data
Saves the selected plot data in a two column ASCII file. Title, axis and tick
mark information (if any) is not saved. This format is typically used to
save data without additional plot parameters in the file, possibly for use
by another program. Note that a one column input file is saved with the
generated X Axis as a two column output file. AVS automatically ap-
pends the .dat suffix to the output filename.

Write AVS Plot Data
Saves the selected plot in AVS Plot format. Title, axis, tick mark and plot
size information are saved. This format is typically used to save a com-
pleted plot for retrieval and display. AVS automatically appends the .plt
suffix to the output filename.

 Figure 7-13 Plot Styles

Write Data

7-20 GRAPH VIEWER SUBSYSTEM

Write AVS Geometry Data
Saves the selected plot in AVS Geometry format. Title, axis and tick mark
information is included. This format is typically used to save a completed
plot for further use in the AVS Geometry Viewer subsystem. AVS auto-
matically appends the .geom suffix to the output filename.

Write PostScript
Saves the selected plot in PostScript format. Title, axis and tick mark in-
formation is included. This format is typically used to save a completed
plot for printing on a PostScript printer. Color information and back-
ground images are not saved in the PostScript file, nor sent to the printer.
AVS automatically appends the .ps file suffix to the filename. Output Im-
age below can also create PostScript files, with some additional flexibility
provided by the image to postscript module (encapsulated PostScript,
scaling, landscape/portrait).

In order to actually write the file, you must click on the file browser’s New
File button, then enter the filename in the typein panel that appears.

 Figure 7-14 Write Data Option

Axis Display

GRAPH VIEWER SUBSYSTEM 7-21

Output Image

This button is only active when you are using the Graph Viewer in its graph
viewer module form in an AVS network. The graph viewer module has an
image output port. This output port allows you to convert the active plot
window into an image. In turn, this image can be sent to modules such as
display image and image to postscript.

Because the conversion of a plot into an image is a computationally intensive
operation, the Graph Viewer does not update the image output port every
time the current plot is changed. In order to get an image sent out through
the graph viewer module’s image output port, you must press this Output
Image button.

Axis Display

This menu option controls axis display information for the current plot win-
dow. You can change these settings at any time. See Figure 7-15.

Border Display

Sets the border partially or completely around the selected plot.

Left & Bottom
Displays the border on the left side and bottom of the plot.

Full Border
Displays the border around all four sides of the plot.

Axis Selection

Selects the X or Y axis of the plot for control of all of the following menu
items. Only one axis can be selected at a time.

X Axis
Selects the X Axis of the plot.

Y Axis
Selects the Y Axis of the plot.

Axis Scale

Sets the selected axis of the plot as linear or log based. Each axis can be only
linear or log based.

Axis Display

7-22 GRAPH VIEWER SUBSYSTEM

Linear
Sets the selected axis as a linear base display.

 Figure 7-15 Axis Display Options

Axis Display

GRAPH VIEWER SUBSYSTEM 7-23

Log
Sets the selected axis as a log base display.

Axis Range

Sets the low and high data input thresholds of the selected axis. The defaults
are the lowest and highest data values of the axis dataset.

This enables you to select a superset of the data as input for the selected axis.
For example, you can narrow the range of 0-100 to 25-75 for a better examina-
tion of data between these points.

From
Sets the lowest value of the dataset allowed on the selected axis. The de-
fault is the lowest dataset value.

To
Sets the highest value of the dataset allowed on the selected axis. The de-
fault is the highest dataset value.

Axis Tic Marks

Selects the type of tick marks (if any) that are displayed for the selected axis.
The default setting is for tick marks to be displayed Inside the plot axis. Only
one of the following can be active at a time:

None
Sets the tick marks to none for the selected axis—meaning no tick marks
are shown.

Inside
Sets the tick marks inside the selected axis.

Outside
Sets the tick marks outside the selected axis.

Inside & Outside
Sets the tick marks both inside and outside the selected axis.

Number of Tics

Selects the number of tick marks shown on the selected axis. The default val-
ue is 2 tick marks. The axis is redisplayed with the new value of tick marks.

Axis Display

7-24 GRAPH VIEWER SUBSYSTEM

Decimal Precision

Sets the decimal precision values for the selected axis. The default value is one
position right of the decimal. The affected menu item is Axis Range (From
and To values).

The affected menu items are not shown with the new precision until the Axis
Display menu is redisplayed. If you need to see the new precision after
changing the value, select another menu item (e.g., Read Data) and then rese-
lect Axis Display.

The figure shows a plot where the Y axis is unchanged, while the X axis has
had its intervals reset, its decimal precision increased, and its tick marks
drawn both above and below the X axis line.

 Figure 7-16 Effect of Varying Axis Display Options

Titles, Labels & Legends

GRAPH VIEWER SUBSYSTEM 7-25

Titles, Labels & Legends

This menu option controls the titles, axis labels, and legends for the current
plot window. You can change these settings at any time. See Figure 7-17.

Label Display

Selects between the title, axis labels, tick labels, and legend labels for chang-
ing text and attributes.

 Figure 7-17 Titles, Labels & Legends Option

Titles, Labels & Legends

7-26 GRAPH VIEWER SUBSYSTEM

Plot Title
Selects the current plot window’s title text and attributes for addition or
change. If there is no current title the Current Label data area remains
blank. If a title exists it is shown in the Current Label data area. Attributes
(size, style, location, color) can be changed at any time (see "Label Menu
Selection" later).

Perform the following steps to add or change Title text:

1. Select Titles & Labels in the Option Selection menu.
2. Select Plot Title in the Label Display menu.
3. Place the mouse pointer in the Current Label data area (it will

highlight).
4. Press Ctrl-U to delete the existing entry (if one exists).
5. Type in the new entry and press Return.

X Axis Label
You can select the X Axis Label text and attributes for addition or change.
If there is no current X Axis Label the Current Label data area remains
blank. If an X Axis Label exists it is shown in the Current Label data area.
Attributes (size, style, location, color) can be changed at any time (see
"Label Menu Selection" later).

Perform the following steps to add or change X Axis Label text:

1. Select Titles & Labels in the Option Selection menu.
2. Select X Axis Label in the Label Display menu.
3. Place the mouse pointer in the Current Label data area (it will

highlight).
4. Press Ctrl-U to delete the existing entry (if one exists).
5. Type in the new entry and press Return.

Y Axis Label
You can select the Y Axis Label text and attributes for addition or change.
If there is no current Y Axis Label the Current Label data area remains
blank. If a Y Axis Label exists, it is shown in the Current Label data area.
Attributes (size, style, location, color) can be changed at any time (see
"Label Menu Selection" later).

Perform the following steps to add or change the Y Axis Label text:

1. Select Titles & Labels in the Option Selection menu.
2. Select Y Axis Label in the Label Display menu.
3. Place the mouse pointer in the Current Label data area (it will

highlight).
4. Press Ctrl-U to delete the existing value (if one exists).
5. Type in the new value and press Return.

Axis Tic Labels
You can select the Axis Tic Labels for changing attributes (see "Label
Menu Selection" later). Tick mark labels are generated automatically us-

Titles, Labels & Legends

GRAPH VIEWER SUBSYSTEM 7-27

ing settings in the Axis Display menu. No value or entry is shown in the
Current Label data area when Axis Tic Labels is selected.

Legend Labels
To create legends:

1. Position the mouse pointer over the plot line to be selected.
2. Click any mouse button to select the plot line.
3. The selected line will be highlighted. Type into the Current Label

area to set the plot line’s legend label.
Legend Position

By default, the legend will appear in the upper right hand corner of
the plot. This position can be altered by changing the X and Y
typein values in the Legend Position submenu. The values for X
and Y can range between 0.0 and 1.0. For X, 0.0 is the left side of the
plot and 1.0 is the right side of the plot. For Y, 0.0 is the bottom of
the plot and 1.0 is the top of the plot.

 Figure 7-18 Effects of Varying Titles, Labels & Legends Options

Titles, Labels & Legends

7-28 GRAPH VIEWER SUBSYSTEM

Label Menu Selection

Selects between Font Selection and Label Attributes for the label chosen in
the Label Display menu. Only one can be selected at a time.

Font Selection

Selects the type of font used for the label chosen in the Label Display menu.
Only one font for the chosen label can be used at one time. You can use differ-
ent fonts for different labels. Fonts can be changed at any time. The following
list of fonts is representative; different font lists will appear on different hard-
ware types.

Courier
Is a typewriter style font.

Helvetica
Is a sans serif style font.

New-Century
Is designed for easy reading.

Times
Is a bolder appearing font.

Charter
Is a modern serif font.

Symbol
Is a font with a mix of Greek characters.

Bold
Provides a darker character outline for the selected font. It can be used
alone or with Italic and Drop Shadow attributes.

Italic
Provides an angled script-like appearance for the selected font. It can be
used alone or with Bold and Drop Shadow attributes.

Drop Shadow
Provides a 3D shadow appearance for the selected font. It can be used
alone or with Bold and Italic attributes. (Note: this control may not be
present on all systems.)

Label Height
Controls the display size of the label chosen in the Label Display menu.
Size can range from 0 to 40 points. The current size is shown in the Label
Height menu area.

Place the mouse pointer in the Label Height menu area (it will highlight)
and drag the mouse pointer rightward to increase or leftward to decrease

Select Plot

GRAPH VIEWER SUBSYSTEM 7-29

size. The changing point size is shown as you move the mouse. Release
the mouse button to set the new label size.

Label Attributes

Changes the position and color of the label chosen in the Label Display
menu. Position can be set to one of the following:

Center
Places the label in a centered position.

Left
Places the label in a left of center position.

Right
Places the label in a right of center position.

Edit Label Color

Creats a color editor panel that will control the color of the label. Label color is
adjusted by dragging the mouse pointer on the color bars.

Select Plot

This submenu (Figure 7-19) lets you change the plot attributes (plot type, line
type, color) of already-plotted data.

There may be multiple plots in a single plot window. Perform the following
steps to select an individual plot within the current plot window:

1. Choose Select Plot on the Option Selection menu.
2. Position the mouse pointer over the plot to be selected.
3. Click any mouse button to select the plot.

The plot changes color to white to show it has been selected. The selected
point on the the plot is highlighted with a circle (O). Note that clicking the
mouse button finds the closest real data point, not the "closest line."

The plot remains selected until another plot (if any) within the same window
is selected. Perform the above steps to select another dataset plot within the
same window.

Display Crosshair

Displays a crosshair marker as the mouse pointer moves over the window
display area (Figure 7-20). This makes the mouse pointer location within the

Select Plot

7-30 GRAPH VIEWER SUBSYSTEM

window area easily seen (see also Cursor Position and Selected Point below).

The default setting is for the crosshair to be displayed. The Display Crosshair
menu item lighted means the crosshair is displayed. Unlighted means the
crosshair is not displayed.

 Figure 7-19 Select Plot Options

Select Plot

GRAPH VIEWER SUBSYSTEM 7-31

Plot Attributes

These controls change the plot type and plot attributes. Plot type can be
changed at any time. Line type is available only when the plot type is Simple
Line.

Simple Line

Displays the dataset as a line plot. Line type can be a solid line, dashed line,
dotted line, or dot-dash line. Line thickness can also be changed. The default
setting is Simple Line as a Solid with a Line Thickness of zero. Simple Line
types are as follows:

Solid
Displays a solid line between data points.

Dash
Displays a dashed line pattern between data points.

 Figure 7-20 Crosshair with a Selected Contour Plot

Select Plot

7-32 GRAPH VIEWER SUBSYSTEM

Dot
Displays a dotted line pattern between data points.

Dot-Dash
Displays an alternating dot-dash pattern between data points.

Line Thickness
A typein that controls the line thickness of a dataset plotted as a Simple
Line. The default line thickness is zero. Line Thickness applies to all four
Simple Line types.

Area

Displays the dataset as an area plot. Coloring can be changed at any time.

Scatter

Displays the dataset as a scatter plot. The default scatter plot symbol is the as-
terisk (*) character. Font style, height and coloring can be changed at any time.

Scatter Plot Symbol
It can be changed to any displayable character by deleting the default as-
terisk and typing in the character you want.

Symbol Height
A slider bar that controls the height of the scatter plot symbol. Height can
range from 0 to 40 points. The current size is shown in the Height widget.

To change the height, place the mouse pointer in the Symbol Height
menu area (it will highlight) and drag the mouse rightward to increase or
leftward to decrease size. The changing point size is shown as you move
the mouse. Release the mouse button to set the new size.

The actual size displayed on your screen depends upon the X Window
font sizes installed. The exact size shown is printed on Postscript printers.

Font Styles

The font styles listed below are representative; font lists vary among hard-
ware types.

Courier
Is a typewriter style font.

Helvetica
Is a sans serif style font.

New-Century
Is designed for easy reading.

Times
Is a bolder appearing font.

Select Plot

GRAPH VIEWER SUBSYSTEM 7-33

Charter
Is a modern serif font.

Symbol
Is a font with a mix of Greek characters.

Bar

Displays the dataset as a bar plot. Coloring can be changed at any time.

Edit Line Color

Creates a color editor panel that controls the color of the plot lines, bars, area,
or scatters. This can be changed at any time by selecting the dataset and drag-
ging the mouse pointer on the colorbar(s) you want. You cannot change the
color of the black, background plotting field. However, you can replace it
with an AVS image file.

Delete Plot Dataset

Deletes the currently-selected plot from the current plot window. Once delet-
ed, the plot is lost forever. Confirmation of the delete is required:

Confirm Delete
Verifies the deleting of a plot. Once deleted the plot is lost forever.

Cursor Position

Shows the relative position of the mouse pointer within the plot axis coordi-
nates. Coordinates are based entirely upon the axis values within the plot.

For example, a plot with an X Axis range from 0 to 60 and a Y Axis from 0 to
100 results in a minimum coordinate of 0.00; 0.00 and maximum coordinate
100.00; 60.00 displayed.

 Figure 7-21 Cursor Position Display

Graph Viewer Command Language Interpreter

7-34 GRAPH VIEWER SUBSYSTEM

Moving the mouse pointer within the plot area causes the coordinate display
to vary. The left coordinate is the X Axis and the right coordinate is the Y Axis.

Selected Point

Shows the coordinate value of the selected point within the plot. Select a point
by placing the mouse pointer within the plot area and clicking any mouse
button. The X-Y Axis coordinate for that point is then displayed in the Select-
ed Point data area. This control does not display the data value; just the coordi-
nates.

Graph Viewer Command Language Interpreter

It is possible to drive the Graph Viewer with commands rather than the X dis-
play interface. The commands can be either typed in interactively from a ter-
minal emulator window while AVS is running, or they can be read from a
script file.

This opens many possibilities:

• One could create scripts that animate the Graph Viewer.
• One could create demonstration, illustration, and test scripts.
• One could create scripts that batch-process graphs.

To run AVS with the Command Language Interpreter (CLI) active, type this:

avs -cli other-options

This starts AVS as usual, but also starts the CLI command line interpreter in
the invoking window. (You might have to press carriage return to get the avs>
prompt.)

To get a list of the Graph Viewer CLI commands, type the following:

avs> help Graph

This produces a list of the many Graph Viewer CLI commands. To get help on
an individual commands, type "help" plus the command name:

avs> help graph_output_image
graph_output_image Send an image to the Graph Viewer module’s output port
 Usage: graph_output_image
avs>

There are sample Graph Viewer CLI scripts located in the directory /usr/avs/
demosuite/General/Graph.

The Command Language Interpreter and the Graph Viewer set of CLI com-
mands are documented in detail in the "Command Language Interpreter"
chapter of the AVS Developer’s Guide.

ADVANCED NETWORK EDITOR 8-1

CHAPTER 8 ADVANCED
NETWORK
EDITOR

Introduction

The "Network Editor Subsystem" chapter described the basic Network Editor
operations necessary to construct, use, and save visualization networks. This
"Advanced Network Editor" chapter describes features that the typical AVS
user will need as he/she moves from experimenting with AVS to using it on a
production basis. This includes:

• A module’s parameters can send data to and receive data from other
modules just like other module input/output ports. Thus, module pa-
rameters can be used to control the behavior of other modules in the net-
work. A special case of this is upstream data, where downstream
modules are able to communicate information back "upstream" to mod-
ules that execute earlier in the network.

• Sets of modules can be interactively grouped together to form one macro
module. Macro modules behave in the same way as individual modules.
The macro module can be added to the module Palette, saved, read in,
and made part of a module library.

• Networks can contain a mixture of modules that execute locally, and
modules that execute on a remote host that runs AVS . The remote host
can be "heterogeneous"— of a different hardware type than your worksta-
tion.

• The Network Editor’s Layout Editor can redesign the user interface to a
network. Control widgets, including those of macro modules, can be re-
organized onto different-sized control panels, making it easier to perform
visualization tasks without having to be knowledgeable about network
construction.

• You can create libraries of modules to support an individualized reper-
toire of visualization functions.

• Production networks can be optimized in a variety of ways:
• Where multiple processors are available, modules can execute in par-

allel.
• The user can see and control which process a module executes in.
• The performance of networks containing curvilinear field data may

be improved by instructing AVS to use adaptive block tables.

Parameter Ports

8-2 ADVANCED NETWORK EDITOR

Parameter Ports

Modules can receive and send parameters through one or more parameter
ports. Parameters are the values generated by module widgets or by a anoth-
er module that sends the parameter value to other modules through its out-
put port(s). Parameter ports are normally invisible.

Parameter data (integers, floating point values, boolean on/off switches,
strings of characters) control some aspect of the module’s execution. An inte-
ger parameter might determine which slice plane to take through a volume,
or which element of a vector to extract and map. Floating point values might
control what values should be used to construct an isosurface (3D contour).
Switches can control whether or not to interpolate data. Strings might specify
what file a module should read.

The parameters generated by widgets normally just affect the module to
which they belong. However, it is possible to generate parameter values and
send them to other modules’ widgets through an AVS network connection.

Here are some examples of what you can do with parameter ports:

• A single module producing parameter-type output can send the same pa-
rameter value simultaneously to multiple modules.
For example:
Here an integer parameter module connected to a dial widget produces
two orthogonal slices through the field in different planes (I and J) but at
the same offset value. The results are converted to geometries and com-
posited together.

 READ FIELD
 |
 INTEGER -------------|-------------|
 | | | |
 | | |
 |-----------|-----------------------| |
 | | | |
 ORTHO SLICE ORTHO SLICE
 | |
 | |
 | |
GENERATE COLORMAP | |
 |------|---|----------------------| |
 | | | |
 FIELD TO MESH FIELD TO MESH
 | |
 |----------------------|
 |
 |
 GEOMETRY VIEWER

Here a single samplers parameter module causes hedgehog vector ar-
rows and streamlines to appear simultaneously for the same set of sample
points:

Parameter Ports

ADVANCED NETWORK EDITOR 8-3

 SAMPLERS
 |
 |-------|----------------|
 | |
 HEDGEHOG STREAMLINES

• Coroutine modules that execute independently from the rest of a net-
work, such as user-written simulations, can send an automated series of
parameter values to other modules. For example, one could implement a
"master clock" module for controlling multiple coroutine simulations.
The data coroutine module animated_float is an example. On this mod-
ule’s control panel, you set minimum, maximum, and step values. When
switched on, animated_float sends a stream of evenly-spaced floating-
point values to another module’s floating-point parameter port. Used
with the isosurface module’s "level" parameter, this animates a sequence
of isosurface contours. One can animate any floating-point port on an
AVS module in this way.

 READ FIELD
 |
 GENERATE COLORMAP |
 | |
 | |---------|
 | | |
 COLOR RANGE |
 | |
 ANIMATED FLOAT | |
 | | |-|------|
 | | | |
 ISOSURFACE
 |
 GEOMETRY VIEWER

Connecting Parameter Ports

AVS comes with a set of parameter modules that generate each of the stan-
dard parameter data types. They appear in the Supported Module Palette in
the Data Input column. The parameters modules are as follows:

integer (light purple)
float (dark purple)
file browser (grey blue)
boolean (light purple)
oneshot (white)
tristate (light purple)
character string (grey blue)

In addition there are two coroutine modules that produce a stream of param-
eter values that can be used to make automated animations:

animated integer
animated float

Parameter Ports

8-4 ADVANCED NETWORK EDITOR

One module, field legend, takes field and colormap input, but outputs a sin-
gle floating point parameter. Another parameter module, euler transforma-
tion outputs a small 2D field representing a transformation matrix for input
to tracer.

For more information, including networks which show these modules in use,
see the AVS Module Reference manual, or call up the online module documen-
tation by clicking on the Show Module Documentation button in each mod-
ule’s Module Editor panel. You can also click on the Help button at the top of
the Network Editor menu. This brings up the Help Panel. On the Help Panel
is a Help Demos button. This raises a browser of automatic scripts that you
can run that illustrate the use of most key modules in sample networks.

Creating the Connection

Because some modules have many parameters, showing all the parameter
ports on all the modules in the palette and network would be confusing.
Therefore, input parameter ports are invisible by default.

Before you can connect output parameter ports to input parameter ports, you
must make the input parameter ports visible.

1. Call up each module’s Module Editor window by clicking on the
module icon’s "dimple" with the middle or right mouse button.

2. The module’s parameters are listed in the Module Editor window.
The associated color bar shows the parameter type. Click on the pa-
rameter’s button to bring up its Parameter Editor panel.

3. The Port Visible button on the Parameter’s Editor panel is gray,
showing that it is off. Click on this button. A colored parameter
port will appear on the module’s upper (input) edge. (Note: if you
close the main Module Editor panel, it will also close the Parameter
Editor panel.)

 Figure 8-1 Making Tracer’s Alpha Scale Port Visible

Upstream Data Ports

ADVANCED NETWORK EDITOR 8-5

Connect and disconnect the parameter ports in the usual way: mid-
dle mouse button to make a connection; right mouse button to dis-
connect ports.

Upstream Data Ports

Data in an AVS network normally flows from top to bottom. There is one ex-
ception—if two modules can agree on a data structure, then if module B re-
ceives input from module A, then module B can also send the agreed-upon
data structure back up the network to an input port on module A. This is
called upstream data. Modules can control the visibility of upstream data
ports and the connections between them. Generally, upstream data ports and
the connections between them are invisible. The upstream connection be-
tween the two modules usually occurs automatically, once any other connec-
tion between them has been made. This is also under the control of the
modules involved.

Two important uses for this upstream data feedback mechanism are: you can
have direct mouse manipulation control of "data highlighting" objects such as
slice planes and data probes; and you can pick structures like chemical bonds
by clicking on them.

AVS supplies two kinds of feedback data, the upstream transform and the
upstream geometry, to flow from data output modules such as geometry
viewer back up the network to the data mapper modules such as brick,
probe, and arbitrary slicer.

For example, the probe module takes a data field as input. It outputs an object
to the geometry viewer module (Geometry Viewer) that looks like an elec-
tronics probe. The idea is that you use the Geometry Viewer’s virtual track-
ball mouse cursor to move this probe around the volume of data and the
probe module tells you what numeric values are present at any given point in
3D space.

 Figure 8-2 Animated Float Parameter Module Connected to Tracer

Upstream Data Ports

8-6 ADVANCED NETWORK EDITOR

The Geometry Viewer knows where you have moved the mouse cursor. But
the Geometry Viewer does not know what the numerical values in the field
are at that point.

To produce this information, The Geometry Viewer outputs an upstream
transform which says where in 3-space the probe has moved back up the net-
work to an input port on the probe module. probe takes this "the probe is at X,
Y, Z" information, maps it to the correct data cell in its data field, producing a
numeric value for the probe’s position, which it sends back to the Geometry
Viewer for display.

Picking bonds in a molecule is much the same problem. The Geometry View-
er knows where a user has pointed the mouse and clicked, and it knows what
geometry vertex is intersected by a ray pointed at the object from the mouse
cursor, but it knows nothing about the molecular structure. It sends an up-
stream geometry reporting the selected vertex back up the network to a mo-
lecular mapper module. This module can translate the vertex to a particular
molecular bond, then highlight it, delete it, or whatever, producing a new out-
put geometry to give to the Geometry Viewer. (The probe module also sup-
ports picking in its Pick Geometry mode.)

Connecting Upstream Data Ports

You don’t have to do anything to use upstream data—connections happen au-
tomatically and transparently when you construct an AVS network. When a
module with upstream data output ports, such as geometry viewer, has an-
other module connected to one of its input ports, it automatically checks to
see if that module has a compatible upstream input port. If it does, it connects
its upstream output port to the previous modules upstream input port. (This
automatic connection only happens between adjacent connected modules.)

The following module pairs use upstream data and can be used together to
produce direct manipulation:

geometry viewer and arbitrary slicer
geometry viewer and brick
geometry viewer and hedgehog
geometry viewer and probe
geometry viewer and streamlines
geometry viewer and thresholded slicer

 Figure 8-3 Upstream Data Ports Made Visible

Upstream Data Ports

ADVANCED NETWORK EDITOR 8-7

geometry viewer and animated lines
geometry viewer and samplers
geometry viewer and particle advector
geometry viewer and ucd crop
geometry viewer and ucd probe

display tracker and tracer
display tracker and gradient shade (no auto-connect)

hedgehog and samplers
streamlines and samplers
animate lines and samplers

The display tracker module is interesting. It does not use either an upstream
geometry or an upstream transform. Rather it passes a 4x4 field upstream to
control the tracer module. Any two modules that can agree on an upstream
data type can use the upstream feedback mechanism.

You can make upstream connections visible. Bring up the Module Editor pan-
el for both modules by clicking the middle or right mouse button on their
icon "dimples". Find the color-coded struct upstream-transform or struct up-
stream-geom input or output button. Click on that button to bring up its Pa-
rameter Editor panel, then click on Port Visible. When both output and input
sides of the connection have been made visible, the upstream flow pipe shows
in green. (See Figure 8-4.)

You can disconnect upstream connections. However, if you disconnect an up-
stream transform to a module, the object for that module in the Geometry
Viewer will "go dead". That is, you will no longer be able to move it with the
mouse buttons or Transformation Options panel. You will still be able to
move it from the mapper module’s widget controls.

A better way to get Geometry Viewer control over the upstream probe or slice
plane is to use the Override button on the Geometry Viewer’s Transformation
Options panel.

 Figure 8-4 Probe Upstream Data Paths Made Visible

Editing Tools: Macro Modules

8-8 ADVANCED NETWORK EDITOR

Editing Tools: Macro Modules

The Editing Tools menu controls two fundamental Network Editor opera-
tions: network editing operations such as copying, cutting, and pasting
groups of modules, and macro module editing operations.

Selecting Module Subsets

Network editing operations are performed on the currently selected module
subset. To select a group of modules:

• Click and hold down the left mouse button when the cursor is in the
workspace but not on any particular module. This defines one corner of
the rectangular region that contains the current module subset.

• Drag the mouse button to expand the rectangle so that you fully enclose
all of the modules that you desire in the module subset.

• Release the mouse button to complete the selection operation.

Any modules that are contained within this rectangle are highlighted and
added to the current module subset.

Note that you may need to rearrange the location of your modules on the
Workspace in order to group all of the modules that you desire and prevent
undesired modules from being included in the group.

 Figure 8-5 Editing Tools Menu

Editing Tools: Macro Modules

ADVANCED NETWORK EDITOR 8-9

To cancel the selected group, press and release the mouse button anywhere in
the work space outside of the currently selected rectangular region.

Copy/Cut/Paste Modules

These operations allow you to cut/copy and paste a subset of the network.
This speeds the creation of networks that have duplicate groups of modules
in them.

Cut and copied modules are stored in a current module buffer. You can copy
a group of modules, then clear the network, then paste the group of modules.
The current module buffer is maintained throughout the AVS network editing
session until the Copy or Cut operations are used again. If you Exit out of the
Network Editor, the buffer contents are removed.

When you cut, copy and paste modules, all changes that have been made to
their layout are carried with them.

Copy Modules
The Copy Modules button copies the currently selected group of mod-
ules, their connections; and their layout into the current module buffer. If
no modules are selected when this button is pressed, it clears the current
buffer. The currently selected group of modules is cleared when the Copy
operation is performed. The module buffer can be used in a subsequent
Paste Modules operation.

Cut Modules
The Cut Modules button copies the currently selected group of modules,
their connections, and their layout into the current module buffer. It then
deletes each of the modules in the current selected group. The current
module buffer can be used in a subsequent Paste Modules operation.

Paste Modules
The Paste Modules button merges the modules, connectivity, and layout
information stored in the current module buffer into the active network.
The location of the modules is determined by their original location in the
workspace when they were copied/cut, plus an offset down and to the
right for each time that the buffer has been pasted since the copy or cut
operation.

Macro Modules

Macro modules allow the user to represent a collection of modules, connectiv-
ity and widget layout with a single module icon. When this module icon is
brought down into the workspace, the Network Editor creates the underlying
modules, connections, and widgets. These underlying modules are not visible
to the user unless the user explicitly edits the macro module.

Editing Tools: Macro Modules

8-10 ADVANCED NETWORK EDITOR

Here are two examples where this feature might be used:

• The network builder might want to instance the same module in multiple
networks with a customized widget layout. Rather than having to bring
the module down, then using the Layout Editor each time, the user could
create a macro module that contained just the single module with a cus-
tomized layout. This module is then instanced in each network.

• The network builder might want to reduce the visual complexity of a
complicated network by combining pieces of the network. A generate
colormap module could be combined with an arbitrary slice module to
form a macro module called "slicer", for example.

There are some important facts about macro modules that you need to know:

• The description information necessary to reconstruct a macro module is
stored in an ASCII file. This file can be used with a Read Module com-
mand to load the module into a module library. This file is called the mac-
ro module’s description file.

• When a macro module is included in a saved network, the original macro
description file is not used to restore the network. Rather, all of the infor-
mation describing the macro module is included in the network file. This
makes it easier to transport networks that make use of macro modules to
other environments.

• A macro module does not affect the way in which the network executes.
There are no efficiency gains or losses in using macro modules.

• Macro modules icons have a purple "dimple." They are thus easily identi-
fied in a module library or on the network workspace.

• Macro modules can contain other macro modules

Steps to Create a Macro Module

To create a macro module:

1. If you are creating a macro module out of modules that are already
in the Workspace, then first lasso those modules together into a
module group.
• Use the left mouse button to draw a box around the modules.

Press and hold down the left mouse button. Drag it until just
the modules you want grouped together are highlighted. Re-
lease the left mouse button.

Otherwise, just skip to the next step.
2. Click Editing Tools on the Network Editor’s main control panel.

The module editing submenu appears.
3. Click on Create Macro Module.
4. A pop-up appears. Type in a name for the macro module. You can

change this later with the Module Editor panel.
5. The workspace is redrawn. There are several things to note:

• The IN-> module represents what will be the input ports on
the new macro module. OUT-> represents the output ports.

Editing Tools: Macro Modules

ADVANCED NETWORK EDITOR 8-11

• The module control panel contains only the buttons for the se-
lected modules.

• The complete state of the existing network has been saved.
• The complete Network Editor is still active: you can add, con-

nect, and delete any modules from the Palette and Workspace
that you require.

• At any time, you can cancel the macro module creation opera-
tion by:
• Hammering either the IN-> or OUT-> modules.
• Pressing Clear Network under Network Tools.

6. Connect the input ports of the "real" modules to the output port of
IN->. Similarly, connect their output ports to OUT->. Each differ-
ent data type produces an additional, matching input/output data
port.

7. Decide which module library Palette category—Data Input, Filter,
Mapper, or Data Output—the macro module should appear in. The
default is Data Input.
1. With the middle mouse button, click on IN->’s dimple to bring

up the Module Editor panel.
2. On the Module Editor, press and hold down Change Module

Category. Roll down the pop-up to select a module category.
The category can be changed later using Edit Macro Module.

8. To change the name of the macro module, type into the Module Ed-
itor panel’s Name field. This may also be changed later with Edit
Macro Module.

9. At this point, you may decide to edit the macro module’s control
panel. This is discussed below. If you do not edit the control panel,
it appears just as it would if there was no macro module defined:
each component module appears as a separate button. You can edit
the control panel at a later time with Edit Macro Module.

10. To complete the macro module definition, press Done Editing Lev-
el: 1 on the Editing Tools menu. You will be prompted for a filena-
me. A filename is interpreted relative to the current directory in
the shell from which AVS was started. Otherwise, enter a full
pathname and filename. Like network files, macro module files
have no file suffix convention.

11. The original, saved network reappears. The macro module is
present in the Workspace, indicated by its purple dimple. Connect
the macro module and proceed.
The macro module is also in the module Palette, under whichever
category you defined (default: Data Input).

With no other action, the macro module is available permanently as a file ac-
cessible through the Module Tools menu’s Read Module or Read Remote
Module(s). For portability, a Write Network on a network containing a mac-
ro module will produce a network file that contains the entire definition of
the macro module; not a file reference. Macro modules can be included in
module library files.

Editing Tools: Macro Modules

8-12 ADVANCED NETWORK EDITOR

You can change the definition of a macro module at any time with Edit Macro
Module under Editing Tools.

Creating a Macro Module

Create Macro Module
The Create Macro Module function enters a mode where the user is cre-
ating a new macro module. The user is prompted to enter a name for the
new macro module with a dialog box. The Create Macro Module opera-
tion can be canceled at this point by choosing Cancel on the dialog box.

After the user enters a name for the module, the current network state is
saved, then a clear network operation is performed. If the user had select-
ed a group of modules before pressing the Create Macro Module button,
they are cut from the original network and then pasted into the the new
macro module description.

In addition to any modules pasted from the original network, there are
two new empty "modules", one at the top and one at the bottom of the
network workspace. The top module is called:

IN-> <mod name>

The bottom module is called:

OUT-> <mod name>

The top module has a grey output port, the bottom module has a grey in-
put port. The grey ports on the "input" and "output" stubs of the macro
module can be connected to any data type. You can use these grey ports
to create input and output ports for your macro module that will be visi-
ble when this module is used in a network.

Connecting a module to the grey output port of the module called: IN->
<mod name> will cause a new input port for your macro module with
the type and name of the input port that you connected it to.

Similarly, connecting a module to the grey input port of the module
called: OUT-> <mode name> will cause a new output port for your mac-
ro module that will have the type and name of the output port that you
connected it to.

So that the user can create additional inputs and outputs, the grey port is
moved one slot over to the left. When a port has no modules connected to
it, it is deleted and all of the ports slide over one slot. The resulting macro
module icon will resize itself to accommodate all input/output ports.

All normal network editing operations (including layout editor opera-
tions) are in affect during this time. The user can copy and paste network
fragments, read/merge in network fragments, etc.

Editing Macro Module Category and Name

By default, the macro module is of type Data Input and has the name that
you specified originally. When you complete editing the macro module, it will

Editing Tools: Macro Modules

ADVANCED NETWORK EDITOR 8-13

appear in Data Input column of the current module library and have the
name you originally specified. You can change the category and or name of
the macro module by pressing on the purple dimple of either the IN-> <mod
name> or OUT-> <mod name> modules. This will bring up the Module Edi-
tor panel. This panel contains a button called Change Module Category.
Press and hold down the mouse with the cursor on this button and you will
see a pop-menu that contains the choices available for the module category.
Release the mouse button when the cursor is over the new choice.

Also in this menu is a typein that shows the current module name. You can
change the module name by editing the name in this typein. The name field
can only be edited for macro modules.

Saving Your Macro, Resuming Your Session

When you press the Create Macro Module button, you enter a mode in which
three more menu entries appear on the Editing Tools menu: Create Macro
Stack, Create Macro Page, and Done Editing Level: 1. The buttons Create
Macro Stack and Create Macro Page are described later in this section. The
Done Editing Level: 1 button is pressed when you have completed editing
the macro module and want to return to your original network context.

When this button is pressed, the user is prompted to provide a file name to
save the changes to the "module macro". The description of the macro module
is saved in the file that you specify. The module is added to the current mod-
ule library under its assigned column (see the above section to change the
module category), and the previous network state is restored.

If you had a group of modules selected when you pressed the Create Macro
Module button, these modules will not be part of the network state that is re-
stored. Instead, it creates an instance of the newly defined macro module.

The Create Macro Module button can be used even when already creating a
macro module. In this way, you can create arbitrary levels of nesting of macro
modules. The menu entry: Done Editing Level: <n> displays <n> as the level
that you are currently editing.

Canceling a Macro Module

You can cancel the editing of a macro module by moving either the: IN->... or
the OUT->... module to the hammer icon in the lower right corner of the
workspace. This exits you from editing the macro module and restores the
previous network state.

Another way to exit the macro state is to press the Clear Network button. If
you are creating a macro module, you have three options: Clear Network
which cancels all macro modules that you are currently editing/creating,
Clear Macro which clears only the active modules in this editing request and
Cancel which cancels the Clear Network operation.

Editing Tools: Macro Modules

8-14 ADVANCED NETWORK EDITOR

Editing an Existing Macro Module

Edit Macro Module
The Edit Macro Module button can be used to make changes to an exist-
ing macro module. In order to use the Edit Macro Module button, the
macro module must be instanced on the network workspace, and the
only selected module in a module group. This is done by lassoing the
module with the left button as described in the introduction to this sec-
tion. If this is not the case, an error dialog message will appear.

Once you have pressed the Edit Macro Module button, you enter edit
macro mode. This mode is exactly the same as the create macro module
mode above with only a few minor exceptions. The initial module state of
edit macro mode consists of the modules and connections contained in
the macro module description. Another difference is that when you exit
edit macro mode, you have the option of using its previous macro mod-
ule file and the new edited version of the macro module is restored when
the previous network state is restored.

Note that any connections between the macro module and the previous
modules in the network are not maintained when you exit edit macro
mode. This is done to prevent incompatibilities that might have been in-
troduced while editing the macro.

See the Create Macro Modules section for more information on opera-
tions that can be used when editing a macro module.

Modifying a Macro Module’s Widgets

A very common operation that macro modules are suited to is customizing
the layout of the user interface of a group of modules. If you do not edit the
layout of a macro module, the Network Editor Control Panel interface does
not reflect the existance of the macro module: each component module has its
own button and page of widgets. By using macro modules, you need only
perform the Layout Editor operations once, and then use the resulting mod-
ules over and over again in different networks. The basic method to do this
requires no extra features at all. When editing a macro module, you can use
the Layout Editor functionality to delete widgets, change widgets, create new
pages, move widgets from one page to the next, delete pages etc.

There are two other Editing Tools buttons that make these features a little bit
easier to use:

Create Macro Stack
Pressing Create Macro Stack creates a hierarchical representation of a
group of sub-modules, reflecting the hierarchical nature of the macro
module.

In this interface style, the macro module appears as a single button on the
Network Editor Control Panel, labelled with the macro module’s name.
When the user presses this button, a new series of buttons appears in the
Control Panel—one for each component module. This is a "stack." It is la-

Layout Editor

ADVANCED NETWORK EDITOR 8-15

belled with the name of the macro module. In turn, pressing one of these
buttons raises the individual "page" of widgets for the individual module.

This operation can be performed equally well through the Layout Editor
but there are some important differences. By using the Create Macro
Stack button, you do not need to add each module’s panel individually;
it is done automatically. Any new modules that are created while editing
the macro module have their widget panels automatically added to the
stack. Another important difference is that the stack that is created is as-
sociated with the macro module. When you click on the macro module’s
dimple, the stack will be raised. When you delete the macro module, the
stack is deleted automatically.

Create Macro Page
In this interface style, all of the widgets associated with a macro module’s
component modules are collected together on a single page. Pressing
Create Macro Page creates a new widget page that is associated with the
macro module. You then use the Layout Editor to take the widgets off of
their own individual pages and put them on the macro’s page. Normally
you would then delete the widgets own pages.

This button has significant differences from the Create Page button of the
Layout Editor. The page created by the Create Macro Page button is asso-
ciated with the macro module. When the macro module’s dimple is
pressed with the left mouse button, the page will raise automatically.
More than that, the Network Editor knows to automatically delete pages
that are associated with a module when the module is destroyed. This is
not true of generic pages created with the Layout Editor.

Note: Only one page or stack may be associated with the macro module at
any given time. If you select either Create Macro Page or Create Macro Stack
you will need to delete this page/stack by hand with the Layout Editor before
being able to choose the other option. Neither option can be selected more
than once for a particular macro module.

Layout Editor

The AVS Layout Editor has been called one of the best, but least-known AVS
features. Selecting Layout Editor places the Network Editor in a mode that al-
lows you to "redesign" the user interface of an AVS network. You can, for ex-
ample, place widgets outside the Network Editor control panel to use screen
space more effectively.

By default, each module in the network has its own control panel, and all the
control panels are assembled into the Network Control Panel window. You
can switch among the various modules’ panels, but you can see (and work
with) only one at a time.

The facility for editing the layout of the Network Control Panel includes these
features:

Layout Editor

8-16 ADVANCED NETWORK EDITOR

• Changing the "widgets" that provide interactive control over parameter
values as a network executes. For example, you might change a dial into a
slider, or into a type-in. Some parameters can be assigned to the spaceball
or dialbox input devices.

• Moving widgets around within their control panels.
• Resizing browser control widgets.
• Moving widgets to other control panels.
• Creating new control panels. You might create a new panel, then move

widgets from various existing control panels to the new one.

For example, if you are developing a network useful for visualizing your type
of data as a convenient, packaged application, you should use the Layout Ed-
itor to design your interface to the application. You can put the most com-
monly-used widgets on a single control panel for immediate access. Perhaps
you create a bar along the bottom of the screen that shows all the controls for
all of the modules in the network at once.

For another example, the print field and compare field modules display the
contents of an AVS field file as ASCII data that you can read and interpret.
They are often used when you are trying to import data with read field. How-
ever, their scrolling output browser is very narrow—often too narrow to actu-
ally see most of the contents of the field. You can use the Layout Editor to
make the output browser as wide as you need.

 Figure 8-6 Layout Editor Menu

Layout Editor

ADVANCED NETWORK EDITOR 8-17

Any changes you make to the Network Control Panel layout are automatical-
ly saved and restored by the Write Network and Read Network functions un-
der Network Tools.

Elements of a Layout

The user interface to a network consists of control widgets that are organized
hierarchically:

• Individual control widgets (sometimes simply called controls) corre-
spond to the input parameters of the modules in the network.

• A page is a window that contains one or more control widgets. The page
construct allows you to see all of its control widgets at the same time.
By default, all of a module’s control widgets are assembled onto a single
page.

• A stack is a window that contains one or more elements (typically, pages).
The stack construct allows you to see just one element at a time. You can
switch among them by clicking in the choice menu at the top of the stack
window. (This menu is automatically created as you add elements to the
stack.)
The Network Control Panel window is, itself, a stack. AVS automatically
assembles all the pages of control widgets for a network—one page for
each module—into this stack.

Working with the Layout Editor

When you select Layout Editor, the following submenu appears:

Create Page
Creates a new, empty control panel page.

Create Stack
Creates a new, empty stack.

Undo
Undoes the effect of the most recent layout operation. Clicking Undo re-
peatedly will step back at most five actions.

This feature does not undo the creation of new pages and stacks. It does
not undo creation of a Spaceball or Dialbox manager. It does not undo the
effects of X window manager actions.

AVS creates files with names of the form /tmp/avs_undN.PID to implement
the undo feature. (N is a small integer and PID is the process number.)
Don’t delete these files during a Network Editor session if you want to
use the undo feature. They are automatically deleted whenever you start
AVS or perform a Clear Network.

Layout Editor

8-18 ADVANCED NETWORK EDITOR

Snap to Grid
Causes widgets to automatically align themselves according to a grid,
making the resulting interface neater. The resolution of the grid squares
defaults to 10x10 pixels. You can change this with the GridSize .avsrc star-
tup file keyword.

Spaceball Manager
Creates a Spaceball Manager widget for the network. When the network
executes, you use this widget to choose which module parameter is con-
trolled by the spaceball.

Dialbox Manager
Creates a Dialbox Manager widget for the network. When the network
executes, you use this widget to choose which module parameters are
controlled by the eight dials on the dialbox device.

DialsmatrixMgr
Like the spaceball, it generates a single 4x4 matrix from all the dials and
sends it to a single module paramter.

Click these choices to create additional places in which to organize the net-
work’s control widgets. Then, use the mouse buttons to rearrange the control
widgets. To add a widget or page (or even another stack) to a stack, move it
onto the stack’s set of buttons; a new button appears for the newly-added
item.

Note that in the Layout Editor, the mouse buttons modify the layout of control
widgets, pages, and stacks rather than changing the values of parameters. Red
borders around the control widgets, pages, and stacks remind you that you
are in this Layout Editor mode.

You can resize pages to allow them to accommodate more control widgets.
You can reorganize pages into one or more new stacks. (You can also place in-
dividual control widgets, or even other stacks, within a stack.)

As you move the mouse, elements whose layout can be changed are outlined
in white. A simple white border means the window can be moved or deleted;
a border with a series of "handles" (corner and side boxes) can be resized, as
well.

While in the Layout Editor, most of the titles on pages and stacks become
type-in widgets. You can edit the titles just as you would use any type-in.

You can move, resize, and delete control widgets as follows:

• Left Button: Move element. You can move any type of element—control
widget, page, or stack. The destination can be elsewhere within the same
page, to a different page or to the root window. In the latter case, the con-
trol widget becomes a top-level window, and can be manipulated using
the X window manager.

• Middle Button: Resize a control panel or stack. (Not supported for indi-
vidual control widgets—a question mark cursor appears.) Click and hold

Layout Editor

ADVANCED NETWORK EDITOR 8-19

down the button, then drag the cursor through the edge or corner you
want to move.

• Right Button: Pops up a menu appropriate to the element. The menu
may include:
• Delete: Delete the element. If you delete a control widget, you’ll have

no way to affect the value of the associated input parameter when the
network executes. Deleting a page or stack effectively deletes all the
control widgets it contains.
If you did not mean to delete the element, select Undo immediately.
You may also need to perform a Reconfigure (see below) to adjust the
page size.
To recover a control widget after it is too late for an Undo, you must
invoke the Parameter Editor. In the Workspace, find the module
whose parameter is associated with the deleted control widget. Click
the small square button on the icon with the middle or right mouse
button to open the Module Editor window. In the Parameter Editor
section of this window, click on the desired parameter. This pops up a
menu of choices (e.g. dial, slider, type-in) for the form in which the
control widget is to be reinstated.

• Add Title: Add a title box to a page (if one doesn’t already exist). To
edit the title, move the cursor into the title box, and type in a new ti-

 Figure 8-7 Window Borders in the Layout Editor

Layout Editor

8-20 ADVANCED NETWORK EDITOR

tle. You’ll probably want to start by using Backspace (delete last char-
acter) or Ctrl-U (delete entire title). Don’t forget to press Return to
finish the title.
The title box is itself an element that can be moved, deleted, or edited.
It cannot, however, be resized or moved out of its original page.

• Reconfigure: Resize a page or stack to fit its contents.
• Control widget type (radio buttons): Change the type of control wid-

get (e.g. change slider to dial). You can also change the type of a pa-
rameter’s control widget using the Parameter Editor, as described
above.

For example, to resize print field’s scrolling output browser, you would do
the following:

1. Drag a print field module into the workspace and make it the cur-
rently-selected module by clicking on its menu button on the Net-
work Editor Control panel.

2. Click on Layout Editor in the Network Editor main menu.
3. Place the mouse cursor inside the print field scrolling output win-

dow. The border of the window should turn grey.
4. Press the left mouse button and drag the output window all or par-

tially outside of AVS control panel. The window will be "reparent-
ed" by your window manager.

5. With the cursor inside the output window, press the middle mouse
button and drag it to the left or right to widen the window. (Don’t
resize the window with your window manager, use just the AVS
middle mouse button.)

6. Position the output browser window anywhere that is convenient
on the screen.

7. Leave the Layout Editor by clicking on either Network Tools or
Module Tools.

Including Display Windows in a Reorganized Layout

You can include the display windows created by the display image, display
pixmap, image viewer, geometry viewer, and graph viewer modules in a re-
organized layout. Make sure that the page or stack into which you want to
move the window is large enough. Then, move the window using the left
mouse button, just as you would move any control widget. The display win-
dow is automatically subsumed under the page or stack, so that you can no
longer manipulate it using the X window manager. If you subsequently move
the display window out of its page or stack, it becomes a top-level X window
again.

The Zoom function temporarily makes the window a top-level X window;
Unzoom returns it to the page or stack whence it came.

Layout Editor

ADVANCED NETWORK EDITOR 8-21

In this way you can completely hide unneeded Network Editor functions, re-
duce the need for frequent window manager operations, and present a more
traditional application interface to your end user.

Using the Spaceball and Dialbox Managers

Note: AVS now supports direct connection of the spaceball and dialbox to the
Geometry Viewer’s transformations through AVS command line options,
.avsrc keywords, or environment variables without the necessity of using the
Layout Editor. See the "Starting AVS" chapter.

Each network can have one Spaceball Manager widget and/or one Dialbox
Manager widget. The first time you click its button in the Layout Editor sub-
menu, the widget appears on its own page in the Network Control Panel.
(Subsequent clicks on the same button are no-ops). Examples of these widgets
are shown in the next two figures.

AVS needs to know which serial ports the Spaceball and Dialbox are attached
to. You can use the environment variables SPACEBALL and DIALS to specify
the connections:

setenv SPACEBALL /dev/tty01
setenv DIALS /dev/tty02

You can also use the SpaceballDevice and DialDevice settings in the AVS
startup file (see the "Starting AVS" chapter).

When you click Spaceball manager, Dials matrix manager, or Dialbox man-
ager, AVS attempts to locate the physical device, initializes it, and displays the
name of the serial communications port at the top of the Manager widget. If

 Figure 8-8 Spaceball Manager

Layout Editor

8-22 ADVANCED NETWORK EDITOR

AVS cannot initialize the device (because it doesn’t know where to look, be-
cause the device is not connected or is malfunctioning, etc.) it displays the
string "(unattached)" instead. You can click on this word to bring up a dialog
box that allows you to specify the device name at runtime.

Whenever the name of a serial port is displayed, you can click on it to detach
the device. If you wish, you can then attach the device to another port.

Note: It is not necessary for a spaceball or dialbox to be attached to the system
when you create a network. Just leave the the device "unattached".

Only one module parameter can be assigned to the spaceball at any one time.
Similarly, each dialbox dial can control only one parameter at a time. For flex-
ibility, the devices can be multiplexed:

• The creator of a network can associate several parameters with the space-
ball or with a particular dialbox dial.

• When the network is executed, radio buttons on the spaceball or dialbox
Manager allow you to select which of the several parameters is to be con-
trolled by the device. (The radio buttons are active only when Layout Ed-
itor is not selected.)

 Figure 8-9 Dialbox Manager

Remote Module Execution

ADVANCED NETWORK EDITOR 8-23

The spaceball and dialbox differ in the way the creator of a network associates
module parameters with them:

Associating module parameters with the Spaceball/Dials matrix
In the current network, find the icon for the parameter to be associated
with the spaceball. Use the middle or right mouse button to click on the
icon’s small square, invoking the Module Editor. Then click on Parameter
Editor to bring up a menu that lists the available control widgets for the
parameter (dial, slider, type-in, etc.). If the menu for a parameter has a
Spaceball-client choice, then the parameter can be assigned to the Space-
ball; otherwise, it can’t. Click on the Spaceball choice, then click on Close
to close the menu.

Associating module parameters with the Dialbox
Use the left mouse button to move the parameter’s control widget onto
one of the dials in the Dialbox Manager widget. The control widget disap-
pears and its name appears above the dialbox dial. You can move up to
three control widgets onto each dialbox dial.

To recover the original control widget (that is, to disassociate it from the
dialbox), grab the name with the left mouse button and move it outside
the Dialbox Manager widget back into a page or stack. This always reas-
signs the parameter to a dial control widget. If necessary, use the right
mouse button or invoke the Parameter Editor (see preceding item) to
change the widget type.

When the device managers are deleted, the devices revert back to direct inter-
action with the Geometry Viewer.

Remote Module Execution

AVS supports the synchronous execution of AVS modules on remote AVS
hosts. The remote host must be running AVS Release 3 or later. The network
communication and data transfer mechanism between the AVS kernel/flow
executive and the remote module are based on standard Unix TCP/IP net-
work protocols. Data representation is based on Sun’s External Data Repre-
sentation (XDR). Thus, the remote host can be heterogeneous—of a hardware
type other than type of machine the AVS kernel is executing on. The user in-
terface to remote modules is smoothly integrated in the AVS Network Editor.

There are many situations where you might want to include one or more re-
mote modules in an AVS network; these are a few typical cases:

• You have a compute-intensive module that runs best on a particular kind
of hardware

• You have a module, perhaps a real time data collection application, that
only runs on a particular kind of hardware.

• The data files your AVS network needs reside on a remote host’s filesys-
tem that is not easily accessible from your workstation; it would be easier

Remote Module Execution

8-24 ADVANCED NETWORK EDITOR

to read the files on the remote host, than to manually transfer the data to
your workstation’s filesystem domain.

• You wish to run modules in parallel—some executing on the local host;
others on remote hosts.

In any given situation you must ascertain whether the benefits of remote het-
erogeneous module execution outweigh any data transfer overhead that
might be introduced.

There are three aspects to remote module execution:

• What must be present on the remote system.
• The hosts file that AVS uses to access remote modules.
• The AVS Network Editor user interface to remote modules.

The exact interface to the remote system, particularly the command (rsh or
c_rsh or some other variant) that is used to first establish contact with the re-
mote host, may differ from system to system. This manual describes the gen-
eral case that will usually work between Unix hosts on an "open" network
that does not place barriers to a user going from one system to another. Users
should consult the AVS documentation for the remote system.

Remote System

The remote module(s) must have been compiled and linked on the remote
machine against version 3 or later of the standard AVS libraries. This implies
that the remote host must be running AVS 3 or higher.

Note: Modules compiled and linked under AVS 2 cannot be executed remote-
ly.

No additional libraries or calls are needed to make a module "into" a remote
module.

Certain modules cannot execute remotely:

• The following "builtin" AVS modules are part of the AVS kernel, and
therefore cannot be remote modules:

geometry viewer
generate colormap
display image
display pixmap
graph viewer
image viewer
render geometry
transform pixmap (not on all platforms)
colormap manager
image manager
render manager

Remote Module Execution

ADVANCED NETWORK EDITOR 8-25

• Modules that write results to a /tmp file if other parts of the system must
read the /tmp file. This is because the remote module and the AVS running
on the workstation may not share the same filespace domain. Modules
that do this include:

print field
compare field
vbuffer

Some AVS systems may have versions of these modules without these restric-
tions.

The remote host must accept TCP/IP network communications through the
"Berkeley" socket mechanism.

The remote host must have some way of accepting remote requests to execute
programs on its system, such as the Berkeley Unix rsh (remote shell) com-
mand. (Your workstation must be able to produce these requests.)

Data is transferred between modules in device-independent XDR format.
However, if the remote hardware has a 64 bit wordsize and the local worksta-
tion has a 32 bit wordsize, integers and real numbers past a certain size will
lose significance when transferred.

The remote host does not need to share a filesystem domain with the local
host.

Setting Up A Remote Module Directory

Together with AVS, the self-contained directory of modules described below
is all that is required on the remote host side. There can be multiple sets of
modules accessible on the remote host, each set in its own directory.

1. Make a directory on the remote host.
2. Place in it a collection of modules compiled on the remote host (or

an identical system) and linked against AVS libraries. The format is
the same as in any directory containing AVS modules—there can be
one binary per module, or multiple modules in a single binary. (The
Remote Module execution mechanism does not support reading re-
mote ASCII module library files. However, one can have a "local"
library, some or all of whose elements are remote modules. This is
described later.)

3. The directory must contain an executable binary of the AVS module
list_dir. list_dir is the "point of first contact" for the AVS kernel at-
tempting to access remote modules. Specifically, it is a special mod-
ule that lists the contents of the remote directory for the remote user
and implements the Remote File Browser. list_dir is not in any
module palette. A binary of this module can be usually be copied
from a file named /usr/avs/avs_library/list_dir on the remote host.

Remote Module Execution

8-26 ADVANCED NETWORK EDITOR

Finding Remote Modules: the hosts file

The AVS kernel uses a hosts file to find remote module directories. When you
press Read Remote Module(s), AVS looks for a hosts file in two places, in this
order of precedence:

1. Your .avsrc startup file may contain a Hosts specification like the
following:
Hosts full-file-specification

For example:
Hosts /home/users/username/avsstuff/hosts

or
Hosts /hostname/ourproject/avs/utilities/remotehosts

If such a specification exists, AVS will use the file named as a hosts
file. The file must be findable from your local workstation.
This mechanism lets you create and maintain your own list of re-
mote module directories.

2. AVS uses the system default hosts file in /usr/avs/runtime/hosts. It is
expected that an AVS system administrator would maintain this
file. The AVS product comes with a sample /usr/avs/runtime/hosts
file to use as a template.

hosts File Format

The hosts file is an ASCII file. Each line in the file has four columns of informa-
tion. If the string occupying a column contains blanks, it must be enclosed in
double quote marks ("/usr/ucb/rsh host -n"). Here is a sample:

mercury_std "/usr/ucb/rsh mercury -n" /usr/avs/avs_library /usr/avs/data
mercury_my "/usr/ucb/rsh mercury -n" /usr/myproject/avs/modules /usr/myproject/avs/data
cruncher1 "/usr/avs/bin/c_rsh nexus" /usr/avs/avs_library /usr/avs/data

• The first column contains a logical name. This is the name that will ap-
pear in the Remote Host Browser described below. It merely identifies the
line of instructions to execute. It makes it possible to have multiple sets of
AVS modules and/or data on remote hosts that you can select among as
the situation demands. You can also run a network on a different host by
modifying the mapping of the logical name to the actual remote host.

• The second column is the full file specification of a program that will run
a command on the remote host. This is where the specific remote host is
actually identified.
The obvious choice for this "run remote program" function in networks of
Unix-type machines is rsh (remote shell). This program is usually found
in /usr/ucb/rsh in your workstation’s file system domain. Be sure to
add the -n flag to rsh. It will prevent the remote process from grabbing
terminal input, placing your AVS in the background where it will seem to
"go dead."
Many workstations will be on secure networks where the remote host
(usually some central number cruncher) will not permit a simple rsh that
just "shows up" from the network to execute. The remote host may re-

Remote Module Execution

ADVANCED NETWORK EDITOR 8-27

quire that you authenticate yourself first. Consult the remote host’s docu-
mentation.
Because there are blanks in this column, enclose it with double quote
marks.

• The third column is the directory on the remote host where the modules
are kept. This string is part of the rsh command that AVS sends the remote
machine. Thus, this file specification is in the file system domain that the
remote machine understands. This may or may not be the same as your
workstation file system domain.

• The fourth column is a default data directory on the remote machine.
Many AVS modules such as read field use a file browser widget. This tells
them what to use as the default directory for the file browser widget.
Again, this file specification is in the file system domain that the remote
machine understands. This may or may not be the same as your worksta-
tion file system domain.

The example shows three cases:

• The first is a standard Unix file specification, presumably on some power-
ful cycle server machine called mercury. The location of the modules and
data specified are the usual standard AVS modules in the standard place.

• The second is also a Unix file specification for the cycle server mercury;
but here the modules and data are kept in some private directory for a re-
search project.

• The third example uses the c_rsh program to run modules on a remote
system called nexus.

The first module that the AVS kernel directs the remote machine to execute is
list_dir, which produces the directory listing of the Remote Module Browser.
Once started, the list_dir module continues to execute until the AVS session
ends.

Network Editor User Interface

The user interface to run remote modules is logically and smoothly integrated
into the AVS Network Editor. The interaction is basically identical to reading
and using modules from a local file system with Read Module(s).

1. Start AVS and enter the Network Editor as usual.
2. Click on Module Tools on the main Network Editor menu.
3. The Module Tools submenu has a button: Read Remote Mod-

ule(s). Clicking on this button raises the Remote Host Browser.

The host names in the Browser window list are taken either from the hosts file
specified by the Hosts line in your .avsrc startup file, or from the system /usr/
avs/runtime/hosts file.

Remote Module Execution

8-28 ADVANCED NETWORK EDITOR

The Remote Host Browser functions like any other AVS browser; click on a
hostname to select it. Scrollbars scroll the list of hostnames. Close takes down
the browser.

4. Once you click on a hostname, the Remote Host Browser is re-
placed with the Remote Module Browser. The names in the Re-
mote Module Browser are the filenames of modules on the remote
host.
AVS reads the "run remote program" command for that host from
the second Column of the hosts file, usually /usr/ucb/rsh. It executes
the remote program giving the hostname, remote module and file
directory specifications (third and fourth column of hosts), and
list_dir as parameters. It also passes the X Window System DIS-
PLAY environment variable to the remote host so that it can make
windows on your workstation. If the connection to the remote host
was successful, and the remote directories were found, and list_dir
was initiated, then the Remote Module Browser widget appears
with the remote modules listed.

5. To load a remote module into the module palette, click on its name
in the Remote File Browser. If the module has the same name as an
existing module in the palette, it replaces it. If it has a new name, it
is added to the module palette. The visual clue that this is a remote

 Figure 8-10 Remote Host Browser

Constructing a Module Library

ADVANCED NETWORK EDITOR 8-29

module is the module icon’s "dimple"—it will be pink instead of
the usual gray.

Thereafter, one deals with the remote module like any other module: drag it
into the workspace with the left mouse button, display its Module Editor by
clicking the right mouse button on its dimple; turn its parameter ports on and
off, connect it up to other modules in the network, click on its button, manip-
ulate its widgets, run data through it, disconnect and destroy ("hammer") it
just like any other module.

Only two differences may be noticeable:

• Remote modules with File Browser widgets, such as a remote read field,
have Remote File Browser widgets. (These communicate with the remote
list_dir module.) Remote File Browser widgets navigate in the filespace
domain of the remote host.
You can use the Remote File Browser’s New Dir or New File button to se-
lect a remote directory.

• Remote modules that are not part of the standard AVS module may not
have online man pages associated with them that are accessible through
the Module Editor’s Show Module Documentation button.

Otherwise the interaction is the same.

If you save a network that contains remote modules, remote modules in the
directory specified in the hosts file are saved with the string $RemMods
prepended to the module’s name. When it comes time to read the network in
again, $RemMods will be replaced with the module directory for the destina-
tion host. This makes it possible to define networks containing both local and
remote modules that can be initiated independent of any specific remote host.
The network should be read in correctly provided that the Read Network
function is issued in an environment where the logical host name can be inter-
preted by a hosts file.

If you save an ASCII module library containing some (or all) remote mod-
ules, it too should work correctly when it is read in again, providing that the
Read Module Library function is issued in an environment where the logical
name can be interpreted by a hosts file. You can have such libraries loaded au-
tomatically when you start AVS by adding the library’s filename to your .avsrc
startup file.

As noted earlier, this release of AVS does not support reading or writing re-
mote module libraries—that is, libraries of modules whose ASCII description
file exists on a remote machine.

Constructing a Module Library

You may find that the collection of modules in the AVS supported and unsup-
ported module libraries is not exactly what you’d like the Palette to contain:

Constructing a Module Library

8-30 ADVANCED NETWORK EDITOR

• There may be modules that you never use, and would like to remove.
• You may want to add some modules that you’ve written.
• You may want to organize the modules into subsets (perhaps overlap-

ping) that contain modules for a specific type of visualization, a particular
data type, etc.

• You may want to change the names of the categories: Data Input, Filters,
Mappers, Data Output.

There are two approaches to constructing your own module libraries:

• Module libraries are defined by ASCII text files. You can construct a mod-
ule library "source" made up of library file commands followed by mod-
ule binary filenames using any text editor; then "compile" the library
using the avs command line option -compile_library. This will automati-
cally generate the module description text.

• You can use the Module Tools menu’s Edit Module Library function to
interactively add and delete modules from a module library. This interac-
tive editing does not support direct manipulation "moving" of modules
from one Palette to another.

Sample Interactive Procedure

Suppose you are an instructor teaching a class on the behavior of particles in
vector fields. You are going to use AVS for your students’ labwork. The de-
fault Supported module library in the AVS palette contains far more modules

 Figure 8-11 Edit Module Library Panel

Constructing a Module Library

ADVANCED NETWORK EDITOR 8-31

than are pertinent to the subject. You’ve also written a few data input and vi-
sualization modules that you want to add to the students’ module palette.

1. Start AVS and enter the Network Editor with the default Supported
module library in the Palette.

2. Press Module Tools on the Network Editor menu.
3. Press Edit Module Library on the new submenu. This brings up

the Edit Module Library panel:
4. Now start deleting the modules you don’t want:

• Position the mouse cursor over the module’s icon in the mod-
ule palette.

• Press and hold down the left mouse button.
• Drag the module icon into the work space all the way down

until it is over the hammer icon and release the mouse button.
• The module is deleted from the palette.
If you release the mouse button before the module icon is over the
hammer, then the module is not deleted from the palette. You need
to hammer away the instanced version of the module and repeat
the operation again from the start.
There is no module editing "mode". It is possible to inadvertently
delete modules from the Palette if you accidently drag a module
icon all the way to the hammer without releasing the mouse button.
If this happens, you can read in a new copy of the module with the
Read Module(s) button.
In truth, it may be faster to do this initial large-scale deletion using
a text editor on a copy of the actual library file.

5. Now begin adding in your own modules. Press Read Modules and
individually type in the file specification for each module’s binary
file. They will be added to the currently selected module library
and will appear on the Palette.
If your module binary files have multiple modules in each file, you
can delete the individual elements that you don’t want interactive-
ly as described above.

6. Next, press Rename Library on the Edit Module Library panel and
typein a new library name. This changes the string that is displayed
at the top of the Palette from "Supported" to your own name.

7. You can change the names of the columns by typing in strings into
the spaces next to the Column 1, Column 2, Column 3, Column 4
labels.

8. You can move modules from one category to another by bringing
up the Module Editor window (click with the middle mouse but-
ton on the Palette modules’ dimple), then use the Change Module
Category menu (see the "The Module Editor and Parameter Editor
Windows" section for more information).

9. The final step is to use the Edit Module Library panel’s Write Li-
brary function to create the ASCII library file version of what is in
the Palette to disk. Module library files do not have a particular file
suffix.

Constructing a Module Library

8-32 ADVANCED NETWORK EDITOR

You will have to exit AVS and re-enter it before your new library
will show in the Read Module Library browser.

One case is not explicitly covered here: suppose there is one module in the
Unsupported library that you want in your own module palette? There is no
direct manipulation way to move modules from one palette to another as
there is to delete modules from a palette. Instead, use Read Module to read
the binary form of the unsupported module found in the directory /usr/avs/un-
supp_mods.

The Edit Module Library panel’s Create Module Library functions creates a
new, empty library in the Palette area. The new library is not written to disk
until you enter Write Library. The Delete Library function deletes the library
from the Palette, not from disk.

Lastly, you should give your students a .avsrc or .avsrc.X file with a ModuleL-
ibraries line in it that will load your module library automatically when they
start AVS. To be the default library that shows in the Network Editor module
Palette, your library file specification must be the last listed on the ModuleLi-
braries line.

Compiled Module Libraries

In AVS, module libraries usually provide static snapshots of the descriptions
of a set of modules for fast startup of the network editor. Although conve-
nient, these libraries can easily get out of date when individual modules un-
dergo changes. Module libraries can now be "compiled" from lists of module
executables; AVS will read in the specified executable files or directories, and
builtins and produce a static version of the module libraries. The source ver-
sion of the library is itself a valid module library but one which would require
waiting for all the specified modules to identify themselves to AVS for use.
This feature allows an easily updated source version of the module library to
be "made" into a compiled library as part of a normal Makefile whenever one
of the source modules is updated to ensure an accurate module library.

For example, a source library such as

AVS Module Library Version: 1
file field_legend

would produce a compiled library with the entry

AVS Module Library Version: 1
external "field legend" 0 "field_legend" 3 2 "Input" 65 "field"
 "Input Colormap" 1 "colormap" 1 "value out" 0 "real" 4 "node data"
 "choice" "value" "real" "lo value" "real" "hi value" "real"

The command to compile a library is:

avs -compile_library source_filename compiled_filename

Constructing a Module Library

ADVANCED NETWORK EDITOR 8-33

1. The source library consists of builtin lines, file commands and any
other normal module library entries. Currently the source files just
use builtins and files. During compilation the files are read syn-
chronously (we wait on each one) and the resulting library is writ-
ten out. The DISPLAY variable does not need to be set. (See the
next section on module library file format.)

2. An executable can be deleted from the compiled library using the
module library delete command. If there were a combined execut-
able read into a compiled library that brought in an undesired mod-
ule named foo, use the following line to remove it from the
compiled library:
delete foo

3. The compiled library is located in the same directory as the module
executables if relative pathnames are desired (no leading directory
name).

Module Library File Format

You can look at the AVS-supplied module library in /usr/avs/avs_library/Sup-
ported to see what a library file looks like. AVS itself uses a somewhat more
complex file format for the module library file it creates when you select the
Write Library function on the Edit Module Library panel. The more complex
format allows the Network Editor to load the module library more quickly.
The format encapsulates the information created by the module’s AVSmod-
ule_from_desc call.

ID Line
The module library file must begin with this line:

AVS Module Library Version: <n>

The version number <n> indicates the version of the module library file that
you are creating. If you are copying commands from an automatically gener-
ated module library file, make sure to copy the version number from that file
as well. Other lines that begin with # comment character may precede this
line.

Command Lines
Each subsequent line must begin in one of these forms:

builtin "module_name"
external "module_name" flags filename <additional info>
remote host "module_name" flags filename <additional info>
macro "module_name" flags filename <additional info>
file filename
directory dirname
name module library name
title column column name
delete module_name

Constructing a Module Library

8-34 ADVANCED NETWORK EDITOR

The builtin keyword specifies a module that is built into AVS itself, rather
than being implemented as a separate executable file. These are the cur-
rent supported builtin modules:

generate colormap
geometry viewer
display image
display pixmap
graph viewer
image viewer
render geometry
transform pixmap

The external keyword means that the modules is not builtin. external ex-
pects the detailed module description information created by Write Li-
brary to be present in the library file. It is not advised that you type this
information in by hand. Rather copy the external line(s) from a module li-
brary file created with the Write Library function.

remote is the same as external except a logical host name is specified. It is
used to locate modules that will execute on remote hosts in the network.

macro is the same as external except the module is created as a macro
module.

The file keyword specifies an executable file that includes one or more
module definitions. file is the same as external, except that it directs the
Network Editor to read the binary file filename and, from that, construct
the detailed description information. This is much slower for the Net-
work Editor. It is intended instead to be used in source module library
files that are converted to compiled module library files with the avs com-
mand line option -compile_library.

The directory keyword specifies a directory that includes executable
module definition files. Like file, it makes the Network Editor open each
file to discover the description information, rather than finding it in the li-
brary file. This can be very slow for large directories.

The name keyword specifies that the next argument should be used as a
name for the module library. By default, the filename is used as the name.

The title keyword modifies the categories of the section headings (i.e.
Data Input, Filters etc.) The column argument is the column number (be-
tween 1 and 4), and the column name argument specifies the new name
for that category.

In each case, if the filename or directory is a simple file name or directory name
without a path, then AVS assumes that it resides in the same directory as the
library file. Otherwise, it expects a complete path.

The description information is used to accurately draw the module icon’s
name and input and output ports in the module Palette, and provides the in-
formation you see when you bring up the Module Editor panel for the mod-
ule by clicking on its dimple to fill in the panel’s information. It is only

Optimization: Parallel Module Execution

ADVANCED NETWORK EDITOR 8-35

relevant before a module is dragged into the workspace. It is not practical to
type in this information yourself. You should let the Write Library function
do it for you.

Optimization: Parallel Module Execution

AVS has the capability to run modules in parallel when the opportunity to do
so is encountered in a network. The user specifies the maximum number of
modules that should be run at any given time using the -parallel n command
line option. The number n might correspond to the number of processors or
hosts available to the application. When there are parallel branches in a net-
work (a module sends its output to more than one downstream module), the
downstream modules may be run in parallel.

There are a few conditions that can inhibit running modules in parallel:

• The maximum number of parallel modules has already been met, as set
by the -parallel n option.

• The two modules are in the same process. Note that most supplied AVS
modules are compiled together in one binary and execute in one process.
Thus, one must usually expect to have to divide them into separate pro-
cesses before they will execute in parallel.

• The module to be run in parallel has an input that is connected to an out-
put of the running module, either directly or indirectly through a series of
other modules.

To control which modules are put in the same process when editing a net-
work, you can use the Module Editor panel’s process id printout and Group
typein. This is particularly useful for ensuring that two potentially parallel
modules are not placed in the same process. See the "Optimization: Control-
ling Module Groups and Processes" section below for information.

Alternately, you can force all modules to run in separate processes using the -
separate command line option.

The "Multiple Module Processes in AVS" section of the Developer’s Guide "AVS
Overview" chapter describes which AVS modules are grouped together into
single processes by default.

Optimization: Adaptive Block Tables

The AVS_ADAPT_TABLE switch environment variable causes AVS to use
adaptive block tables. Setting AVS_ADAPT_TABLE 1 can speed the execu-
tion of networks processing irregular fields. AVS_ADAPT_TABLE is off (0)
by default.

A block table is a data structure that maps field points’ I, J, K indicies in an ir-
regular field within a "block" of X, Y, Z world space. Modules such as arbi-

Optimization: Controlling Module Groups and Processes

8-36 ADVANCED NETWORK EDITOR

trary slicer and probe use the block table to interpolate values at points "on"
their sampling surface, determining which need to be mapped as colored
polygons.

AVS normally builds a regular, evenly-dimensioned block table. Where data
points are fairly uniformly spaced within the field, such a block table pro-
vides efficient access to the I, J, K values in each block of the grid—each block
has approximately the same number of points. However, where data values
are concentrated in some areas of the field, but sparse elsewhere (e.g., the
wing surface of the bluntfin.fld dataset) search times in the dense blocks be-
come much longer.

An adaptive block table creates the block table as an octree. Where data val-
ues are dense, the block grid is divided and subdivided again until each block
contains only a short list of I, J, K values to search through, improving perfor-
mance.

Adaptive block tables are slower to construct, but execute more rapidly in the
areas with dense grids. People with irregular datasets where the distribution
of data points is uneven should try setting AVS_ADAPT_TABLE 1 to see if it
improves the performance of the arbitrary slicer, threshold slicer, streamline,
particle advector, hedgehog, probe, and color geom modules.

Optimization: Controlling Module Groups and Processes

Modules have an attribute called the "module group" that can be used to con-
trol whether two modules are placed in the same process or not. This feature
is useful for advanced network editing operations to:

• Increase the parallelism of a network by ensuring that parallel fragments
of a network are not placed in the same process. Two modules that are in
the same process cannot be run in parallel.

• Increase the efficiency of executing a particular network by ensuring that
modules that are connected are placed in the same process so that they
can share data if inter-process shared memory is not available for some
reason. (The "AVS Overview" chapter of the AVS Developer’s Guide has a
diagram that shows AVS’s various strategies for minimizing data memo-
ry and copying requirements when modules are in the same or different
processes, and when shared memory is or is not available. The "Multiple
Module Processes in AVS" section of the save Developer’s Guide chapter
describes which AVS modules are in which binaries.)

The module group attribute is an ASCII string that the user can define for a
particular module by typing into the Module Editor panel of a particular
module. When this string is the same for two modules, they share the same
module group and can be placed in the same process when the module is cre-
ated.

The module group can only be used to inhibit two modules from being placed
in the same process but by inhibiting a module from sharing another mod-

Optimization: Controlling Module Groups and Processes

ADVANCED NETWORK EDITOR 8-37

ule's process, it opens up an opportunity to share the process with a third
module.

Here is an example. We have three modules "module A", "module B" and
"module C". All three modules are contained in the same executable, all were
originally declared to be REENTRANT and COOPERATIVE in their module
source. (See the "Advanced Topics" chapter of the AVS Developer’s Guide for a
definition of these terms.) We want module A and module B to be run in par-

 Figure 8-12 Module Editor Panel

Optimization: Controlling Module Groups and Processes

8-38 ADVANCED NETWORK EDITOR

allel so they cannot be in the same process. But, we want module A and mod-
ule C to be in the same process to reduce the startup time of the network. We
can do this most concisely by defining a module group for module B when
the module is still in the module Palette. Now, when we instance module A
and module C, they will be placed in the same process because neither mod-
ule has a defined module group string. When we instance module B, howev-
er, its module group won't match the non-existant group of module A, and so
it will start a new process. Module A and module B can now be run in parallel
if the network is constructed in a way that allows parallel execution.

There are other situations where defining the module group may make sense.
Some systems do not support shared memory communication of data be-
tween two processes. On these systems, when two modules are connected it
is necessary for AVS to make an extra copy of the data set in order for the
downstream module to have access to it—unless the two modules are in the
same process. A module that is COOPERATIVE but not REENTRANT can
only have one module instance in a particular process. We can therefore come
up with a situation in which the system will make an arbitrary decision when
grouping modules into processes. The user can use the module group to im-
pose an order on this grouping.

The module group can be modified for either an inactive module in the Pal-
ette or for an active module that has been instanced in the Network Editor
Workspace. The module group attribute is only referenced, though, when
you are creating a new module (dragging it into the Workspace). Changing
the module group of an active module does not rearrange modules in pro-
cesses but will potentially affect how a new module is started.

The module group attribute is properly saved and retrieved when you save
away a network.

Note: There is a CLI net_group command that supports a different, simpler
function: the lassoing of modules to be moved as a group. The net_group
CLI command is irrelevant to module grouping as just described. Module
process grouping is controlled by a -group option to the module CLI com-
mand.

AVS ON COLOR X SERVERS A-1

APPENDIX A AVS ON
COLOR X
SERVERS

Introduction: Renderers

It may be possible for you to run AVS as a remote X Window System client on
any system in your network that runs AVS. Your own display hardware need
only be a color workstation or X terminal that meets some minimum require-
ments.

AVS’s graphics functionality is always implemented on top of an underlying
graphics subsystem. Whether you will be able to run AVS as a remote X client
depends upon whether there is a common ground between:

• The graphics protocol your display hardware understands.
• The graphics protocol the remote AVS host produces.

There are two "graphics protocols" to choose from:

1. The X window system and AVS’s software renderer.
2. The platform’s native graphics subsystem and AVS’s accompany-

ing hardware renderer.

At this date, all major workstations and X terminals use the X Window Sys-
tem to control their display. The AVS interface, the Image and Graph View-
ers, the Network Editor, and all applications use the X Window System to
produce their screen output. There is thus no problem with generating those
aspects of AVS on a remote host for display on a local host.

The AVS software renderer, used by the Geometry Viewer, also produces an
X image as its final output. This X image can be shipped to the local color dis-
play for viewing on the screen. Thus, provided your local display hardware
meets the minimum requirements and you specify that you wish to use the
software renderer only (avs -nohw), you should always be able to run AVS as
a remote X client with the software renderer.

Using remote hardware 3D rendering in the Geometry Viewer is more prob-
lematic. In this case, the hardware renderer is producing a stream of graphics
protocol commands. Most graphics protocols assume a local display. How-
ever, some, such as PEX (PHIGS Extension to X) and distributed GL, are capa-
ble of sending their graphics protocol stream to a remote display. That remote
display must, of course, understand the protocol stream it is receiving and be
able to translate it into the correct picture on the screen.

Minimum Requirements

A-2 AVS ON COLOR X SERVERS

You must consult your platform’s AVS release notes to discover how hard-
ware rendering in your AVS is implemented, and what kinds of display de-
vices can communicate with it remotely.

The remainder of this Appendix discusses the minimum requirements neces-
sary to run AVS as a remote X client from a workstation or X terminal display.
It then gives pointers for using AVS efficiently in this configuration that are
relevant on a wide variety of local display/remote host combinations.

Minimum Requirements

AVS can be run as a remote X Window System client from any color display
hardware that meets the following minimum requirements:

1. It runs an X server at version X11R2 or later.
2. It has an 8-bit per pixel (8-plane) or greater color frame buffer.
3. Its X server has an X Window System "visual" defined that supports

one the following:
8 bit PseudoColor (minimum)
12 bit PseudoColor
16 bit TrueColor
24 bit TrueColor

DirectColor is also supported. Monochrome is not supported.
4. This visual must be the default visual. AVS normally only communi-

cates with an X server’s default visual. If it is not, you must use the
VisualType startup file keyword to redesignate the visual that AVS
will use. (It is also possible to change the default visual when the X
server is started. See your system’s X server documentation.)

5. It has at least a 256 element colormap.
6. Its screen resolution is a minimum of about 1024x768.

Standard X systems support the command xdpyinfo which causes the server
to print out a list of its capabilities. You can use this list to determine if your
display hardware can use AVS as a remote X client. (If your system does not
support the xdpyinfo command, then remote login to a machine that does
have xdpyinfo, set the DISPLAY environment variable on the remote host to
point back to your local display, then issue the xdpyinfo command. You
should get the X server report.)

The following is shortened version of an xdpyinfo report issued on a display
that meets the minimum requirements. The numbers at the side show which
of the numbered requirements listed above is being reported on.

name of display: mercury:0.0
version number: 11.0 <------- 1
vendor string: Hardware Computer Inc.
 .
 .
 .
screen #0:

Overall Performance

AVS ON COLOR X SERVERS A-3

 dimensions: 1024x780 pixels <------- 6
 resolution: 80x80 dots per inch
 .
 .
 .
 default number of colormap cells: 256 <------- 5
 .
 .
 .
 number of visuals: 3
 default visual id: 0x80067 <------- 4
 visual:
 visual id: 0x80067 <------- 4
 class: PseudoColor <------- 3
 depth: 8 planes <------- 3
 size of colormap: 256 entries <------- 5
 red, green, blue masks: 0x0, 0x0, 0x0
 significant bits in color specification: 8 bits
 visual:
 visual id: 0x80066
 class:
 depth:
 .
 .
 .

Of course, you can always just try it and see if it works.

Overall Performance

AVS was originally implemented to run on very high-performance, true color
(24 plane) workstations with considerable hardware support for 3D graphics
rendering, including hardware gouraud shading, lighting, texture mapping,
and hardware-assisted polygon and sphere rendering and transformations.

When you run AVS on a 3D graphics system, but display on a generic X serv-
er running on another piece of hardware, you will be missing some or all of
these hardware performance accelerators and some color rendering abilities.
The standard X protocol that AVS might use to communicate with the remote
X server does not transmit the information that would be needed for the X
server to take advantage of any graphics hardware support, even if it is
present on your local workstation. All that is sent with the software renderer
is an X image.

If the protocol between the client and server is based on PEX, or some other
standard, more of the local display’s graphics power may be used.

On pseudocolor systems, color rendition will be more limited in images and
pixmaps. Often, instead of smooth gradations in shade, you might see several
bands of colors.

Set Up: Startup File Keywords, and Environment Variables

A-4 AVS ON COLOR X SERVERS

AVS will not be rendering data "colorized" with generate colormap in true
color. Instead, it must map the values in generate colormap’s colormap into
the 212 color slots (on 8 plane devices) of the 256 element hardware colormap
on the workstation. The generate colormap Colormap Editor widget will
show you an accurate picture of the colors that will be used for data values.

In short, this configuration preserves most of AVS’s functionality, but has a
more limited color palette, and it is likely to be comparatively slow for 3D
rendering.

Set Up: Startup File Keywords, and Environment Variables

You should define the following Unix C shell environment variable, either in-
teractively or in one of the files executed automatically at login or shell start-
up:

setenv DISPLAYCLASS X

Alternatively, invoke AVS with an additional option:

avs -class X

Both commands are case sensitive.

This has two effects described below.

.avsrc.X Startup File

With -class X specified on the command line, or setenv DISPLAYCLASS X set
in your environment, AVS will first look for a file in /usr/avs/runtime called
avsrc.X. The released version of AVS does not have such a file. Not finding it,
it will execute /usr/avs/runtime/avsrc. Next, AVS will look for a file in your
HOME directory called .avsrc.X. This AVS startup file can be a copy of your
usual .avsrc file, but with the few extra lines described below that customize
the session for the remote client/server configuration. If there is no .avsrc.X
file, it uses the regular .avsrc file in your HOME directory.

If DISPLAYCLASS or -class are set to something besides "X", say "myhard-
ware", AVS will look for a .avsrc.myhardware file instead.

Some systems preset DISPLAYCLASS to another value. Check for this and
make sure your environment sets it to X, overriding the system default if nec-
essary.

Set Up: Startup File Keywords, and Environment Variables

AVS ON COLOR X SERVERS A-5

Display Brightness: Xdefaults.X File and Gamma Keyword

Some machines’ displays are "gamma-corrected". The AVS user interface col-
or scheme, which looks fine on these gamma-corrected displays, will usually
appear much too dark and "muddy" on the X display. The control panels will
look almost black instead of medium grey, and button labels may be unread-
able. If you are using a gamma-corrected system to run the AVS client, defin-
ing DISPLAYCLASS X will cause AVS to use a file called /usr/avs/runtime/
Xdefaults.X to define an initial interface color scheme that is balanced properly
for most X display hardware.

It is not possible to have a "personal" Xdefaults file in your HOME directory.
The best alternative is to get your system administrator to install an Xdefault-
s.yourclass file in /usr/avs/runtime and set your DISPLAYCLASS environment
variable to match yourclass.

Alternatively, you can use the -gamma n command line option or the GAM-
MA n keyword in your .avsrc.X file to uniformly brighten the display. Higher
real values for n produce a lighter display.

VisualType

AVS normally uses an X server’s default visual. If the default visual (as
shown by the xdpyinfo command example above, reference note 4) on your X
server is not the highest-power visual suitable for AVS that your hardware is
actually capable of, you have two choices.

• Change the default visual that the X server uses when the X server itself
starts using a server option. Consult your system’s X Window System
documentation for the correct way to do this.

• Use the AVS startup file option VisualType to select a different visual.
You would normally define this in your .avsrc.X file rather than your usu-
al .avsrc file.

VisualType has four choices for parameters. You may use one of the strings:
PseudoColor , TrueColor, or DirectColor. In this case, AVS will search down
the server’s list of visuals looking for the first visual with a "class" that match-
es.

On some systems, the first PsuedoColor, TrueColor, or DirectColor visual may
not be the most powerful available. In this case, specify an exact visual id as
follows:

VisualType VisualID n

Where n is the decimal equivalent of the X server’s hexadecimal visual id for
the visual you want to use (line 4 in the xdpyinfo sample printout above).

Set Up: Startup File Keywords, and Environment Variables

A-6 AVS ON COLOR X SERVERS

Note: Some systems may not support the VisualType option. See your ven-
dor’s AVS release notes for details.

BoundingBox and Freeze Camera

Bounding Box is a necessity of life when using AVS on an X terminal.

"Real time" rendering of moving 3D objects (and possibly Image Viewer sub-
images) is very compute-intensive. It is usually not possible to rotate or move
a 3D object, light, or camera in the Geometry Viewer with the middle mouse
button in "real time" on an X server the same way that you are accustomed to
doing on a high performance graphics system. Depending upon the complex-
ity of the object or scene, the X terminal may not be able to keep up with the
volume of "real time" rendering information coming from the remote AVS
host.

Bounding Box is a toggle switch found in the AVS Image Viewer and Geome-
try Viewer below the Transformation Options menu. It disables this compute
intensive real time rendering. With Bounding Box turned on, when you place
the mouse cursor over the current transformable and press the middle or
right button, a wireframe box enclosing the volume of the object appears. As
you move the mouse, the bounding wireframe box moves—the object does
not. You move the bounding box to the destination position/rotation/scale,
then let go of the mouse button. Only then is the object rendered at its new lo-
cation and orientation.

You can either remember to turn on Bounding Box each time you run AVS, or
you can add this line to your .avsrc.X file:

BoundingBox 1

Again, match the case of the letters exactly.

You can further reduce re-rendering in the Geometry Viewer by switching on
Freeze Camera. See the Freeze Camera discussion in the "Geometry Viewer
Subsystem" chapter of the AVS User’s Guide.

Changing the Entire Interface Size

If your display is smaller than the normal 1280 x 1024, you can cause AVS to
run in a virtual screen size smaller or larger than the actual screen size with
the -size command line option or the ScreenSize startup file keyword. The
format of the option is:

ScreenSize XDIMxYDIM

Where XDIM and YDIM are the size, in pixels, of the virtual screen.

Starting AVS from a Remote X Server

AVS ON COLOR X SERVERS A-7

You can adjust the size of the Network Editor’s Network Construction Win-
dow, which includes the Network Editor menu, the Module Palette, and the
Workspace. Use the NetworkWindow .avsrc keyword as follows:

NetworkWindow 850x850+250+250

The specification is an X Window System Xgeometry.

Colors: Colormap Cell Allocation

AVS will use the system’s colormap to allocate its colors. How many color
cells it will allocate to itself depends upon how many planes of pseudo color
or true color the X visual calls for. The lowest-usable number of planes is 8-
plane pseudo color. In this case, AVS will try to allocate 242 cells: 6 red x 6
blue x 6 green, plus 26 grey tone cells (6 6 6 26). If this is unacceptable for
some reason, perhaps because it takes too many cells away from other appli-
cations, you can modify the default color allocation with the Colors startup
file keyword. Colors takes four numeric parameters separated by spaces that
specify how many red, green, blue, and gray cells to try to allocate:

Colors red green blue gray

Colors can also be used to establish a wider grayscale for monochrome imag-
es. Increase the gray value while decreasing the red, green, and blue values.
For example:

Colors 5 5 5 100

would produce 125 color cells and 100 gray tones.

Starting AVS from a Remote X Server

AVS will be running as a remote X client. The following lines show the usual
procedure for running remote X clients on a remote Unix system. Check with
your local system administrator to see if there are differences in this proce-
dure at your site.

login to your localhost
 .
 .
 .
localhost% xhost + avshost <--gives permission to remote
 . host to make windows on
 . your display
 .
localhost% rlogin avshost <--login to the remote host
 .
 .
 .
avshost% setenv DISPLAY localhost:n.m <--on the remote system,
 set DISPLAY to point back

Interaction

A-8 AVS ON COLOR X SERVERS

 to your display, e.g.,
 mercury:0.0

If you are using an actual "X terminal" that is connected to the AVS system,
you will only need to make sure that your DISPLAY environment variable is
set correctly.

Software Renderer

If you will be using the software renderer for 3D graphics rendering in the
Geometry Viewer, start AVS as follows:

avshost% avs -nohw

Alternatively, add this line to your .avsrc.X file:

NoHW 1

Without this specification, whichever hardware renderer is present on the re-
mote platform will attempt to establish communication with the local display.
Unless this is one of the few cases (PEX, distributed GL, etc.) where this actu-
ally works, AVS will likely fail to come up properly.

Interaction

For the most part, AVS behaves and looks the same on X servers as it does
running on a local AVS host. The differences are noted below by subsystem.

Image Viewer

All Image Viewer functions should work. If you are going to be doing image
processing techniques on a subimage area, turn on the Bounding Box option.

The main difference between the Image Viewer running on a true color sys-
tem versus running on a pseudo color X server is the appearance of the imag-
es.

On 24 plane true color systems, each pixel can have one of (2**8)**3
(16,777,216) color values. There are 8 bits to represent red tones, 8 bits for
green tones, and 8 bits for blue tones. The red, green, and blue tones combine
to create the actual pixel color. The sample image files in /usr/avs/data/image
are all true color images.

On 8 plane pseudo color systems, in AVS each pixel can normally have one of
216 color values. There are 6 red tones, 6 green tones, and 6 blue tones. To dis-
play a true color image on an 8 plane pseudo color device, AVS takes the orig-
inal red value for each pixel and finds the closest numeric value from among

Interaction

AVS ON COLOR X SERVERS A-9

the 6 reds available. It does the same for green and blue. The final pixel color
is the combination of these three best-matches. This might sound very limit-
ed, but the end result is surprisingly satisfactory.

Pseudo color and true color displays with more planes use the same method
to produce a closer approximation to the original 24 plane true color represen-
tation.

On pseudo color devices, the Image Viewer’s Image menu will contain five
additional buttons that will allow you to control how the images in the output
window are dithered for display. Dithering means that AVS uses an algo-
rithm to adjust the actual pixel values arrived at above by small amounts to
create the impression of greater color range than is actually present. This re-
duces the "banding" you see when a colors change shade slowly over a wide
screen area and produces a closer approximation to a true color image. There
are several dithering alternatives (including "none") that produce different ef-
fects.

The display image module has these same five dithering controls on pseudo
color devices.

Graph Viewer

There are no significant behavior differences in the Graph Viewer.

Geometry Viewer

Most significant differences between AVS running on a high-end graphics
workstation and AVS running on a lower-end machine appear in the 3D
graphics rendering-intensive operations of the Geometry Viewer.

In general, you should:

• Use the Bounding Box control, with Freeze Camera,
• Wait for operations to complete before pressing more buttons or making

more transformations to avoid creating a huge backlog of operations,
• Avoid exposing the geometry viewer’s display window unnecessarily.

This will trigger a refresh of the entire window. With complex objects hav-
ing many polygon surfaces, this can take time.

• When using the software renderer, do not select Polygonal Spheres under
the Cameras menu. Rather, allow the software renderer to use its true
sphere rendering emulation. This saves both time and memory.
Where Polygonal Spheres are desired, be sure to use the Spheres Subdi-
vision control at the bottom of the Geometry Viewer Objects menu. To
make an object look spherical requires many polygon surfaces, which are
slow to render. The Subdivision slider bar controls how many polygons

Interaction

A-10 AVS ON COLOR X SERVERS

to use to represent a sphere. A small number, such as 1, will produce an 8-
polygon diamond instead of a sphere, which renders quickly.

These recommendations are actually no different than what you can do to
improve performance whenever you are using the software renderer.

Network Editor

Except for the color-coding on module icon ports being less subtle, there
should be no differences in the behavior of the Network Editor.

You should look at the generate colormap Colormap Editor panel for an accu-
rate picture of what colors will be used to "colorize" your data. Whatever col-
ormap values are produced by generate colormap, they must be mapped into
one of 216 fixed color values in the hardware colormap.

If you turn on the Disable Flow Execute function under the Network Tools
menu, AVS will not re-execute a network every time you change a parameter.
This makes it possible for you to arrange everything that you want to have
happen in one pass without the network executing until you deliberately tell
it to.

In general, AVS has no "cancel" function. The one exception to this is available
in the Network Editor. If you have started a network executing and you real-
ize that one module in the network is going to take a very long time to exe-
cute, you can often drag that module over the "hammer" in the lower right
corner and terminate that instance of the module. You can do this even while
it is executing. You can then create a new instance of the module, hook it into
the network, and adjust its parameters to be more reasonable. (Note: builtin
modules such as geometry viewer cannot be hammered while they are exe-
cuting.)

If your datasets are large, you can subsample the data with the crop and
downsize modules in the Network Editor.

GEOMETRY VIEWER SCRIPT LANGUAGE B-1

APPENDIX B GEOMETRY
VIEWER SCRIPT
LANGUAGE

Prolog

The Geometry Viewer is the oldest part of AVS. It was introduced in AVS Re-
lease 1. The Geometry Viewer Script Language was developed at the same
time to provide an ASCII language for specifying and saving the properties of
geometry objects, object collections, and Geometry Viewer scenes. More re-
cent releases of AVS have newer means, such as the Command Language In-
terpreter, of performing these same tasks that offer better functionality and
are more consistent with the rest of the AVS interface.

Nonetheless, the Geometry Viewer Script Language is still a useful interface.
It is the language of existing AVS 3 and earlier .obj and .scene files, and it re-
mains a convenient means for performing functions such as creating object hi-
erarchies that are not possible with the Geometry Viewer interface. For these
reasons, it continues to be documented in this appendix to the AVS User’s
Guide.

Introduction

The AVS Geometry Viewer Script Language provides a simple method for
creating objects with specific properties (color, reflectance characteristics, ren-
dering method). You can define objects hierarchically, and specify multiple in-
stances of an object in a hierarchy. You can also define entire scenes, which
comprise objects, lighting, and one or more cameras (views).

Note: The Script Language is not the same thing as the Command Language
Interpreter.

A script is an ASCII file, which you can create with any text editor. You store
the script under a filename with extension .obj or .scene. Such scripts can then
be read by the AVS viewing application, using the Read Object and Read
Scene functions.

The AVS Geometry Viewer will create a file using the Script Language when-
ever you use the Save Object or Save Scene function rather than a CLI .scr
file if you define the environment variable AVS_GEOM_WRITE_V30. It is
often useful to create a file in this way, then revise it later using a text editor.

Scene Files and Object Files

B-2 GEOMETRY VIEWER SCRIPT LANGUAGE

A programmer can access the script language’s functionality through the OBJ
object library. This library is documented in the AVS Porting and Implementa-
tion Guide.

Scene Files and Object Files

The AVS Script Language can be used to represent either object information
alone, or object information along with viewing and light-source information.
A single file format handles both these cases, but for convenience, filename
extensions are used to distinguish a scene (which contains object, viewing and
light source information), from an object (which contains only object informa-
tion). A scene file should always have a .scene extension, an object file should
always have a .obj extension. For both objects and scenes, the script file format
specifies properties of the top-level object. Views and light sources are consid-
ered to be properties of this object. The only real difference between a file with
a .scene and a .obj extension is that:

• Reading a .scene file creates a new top-level object, then modifies its prop-
erties.

• Reading a .obj file causes the existing top-level object’s properties to be
modified.

Example: This object (.obj) file sets the color of the current top-level object to
red:

set_color 1.0 0.0 0.0

Script Language Commands

The script language commands are listed in the table below.

Table B-1 AVS Script Language Commands

Type Command Description

Object read Read object from disk file
group Create group of objects
cycle Create "animation group"
set_color Set color of object
set_material Set surface properties of object
set_matrix Set transformation matrix
set_position Set X-Y-Z position of object
set_render_style Set rendering style of object
rotate Rotate object
translate Translate object
scale Scale object

Script Language Commands

GEOMETRY VIEWER SCRIPT LANGUAGE B-3

These commands are described in the sections that follow.

Object Commands

Each object command affects the properties of a particular object. Some object
commands create a new object, which is added as a child of the current object.
You can also specify the initial properties of the new object. This mechanism
can be used to create an arbitrarily complex hierarchy of objects.

The read Command

read name geom-file { object-properties }

This command reads in a new object, making it the child of the current object.
The object is given the name name and is read from file file. The file must be an
AVS geometry file, with a .geom extension.

If the .geom file is in the same directory as the .obj or .scene file being created,
specify it with a simple filename. Otherwise, specify it with an absolute (com-
plete) pathname.

The new object can have its initial properties set in the optional object-proper-
ties field. (Currently the OBJ library does not support this functionality of in-
cluding properties in a read command that creates a new object — an object
can either have data or can reference other data, but it cannot do both).

The read_subset Command

read_subset name geom_file groupname { object-properties }

This command extracts from the named file, all geometry objects that have
the specified group name. See the description of the GEOMset_object_group
routine in the "Geometry Library" appendix of the AVS Developer’s Guide for
information on how to specify a group name for a geometry object.

Viewing view Define a new view (window)
set_matrix Set the viewing matrix
set_position Set the world coordinates origin
depth_cue Turn on depth-cueing in the view
inactive Make the view inactive
no_zbuffer Turn off Z-buffering of lines in the view
rotate Rotate object
translate Translate object
scale Scale object

Lighting light Define a new light
set_matrix Set rotational position of light
set_position Set X-Y-Z position of light
set_color Set color of light

Table B-1 AVS Script Language Commands

Type Command Description

Script Language Commands

B-4 GEOMETRY VIEWER SCRIPT LANGUAGE

The group Command

group name { object-properties }

This command creates an object whose sole purpose is to group together a list
of subobjects. The object is given the name name and has a set of initial prop-
erties (including a list of subobjects) in object-properties. For example:

group TheFlintStones {
 group FlintStone {
 read Fred flintstone.geom {
 set_color 0.0 0.0 0.0
 set_position 0.0 1.0 0.0
 }
 read Wilma flintstone.geom {
 set_color 1.0 0.0 0.0
 set_position 0.0 0.0 1.0
 }
 }
 group Rubble {
 read Barney rubble.geom {
 set_color 1.0 1.0 1.0
 set_position 1.0 0.0 0.0
 }
 read Betty rubble.geom {
 set_color 0.0 1.0 1.0
 set_position 0.0 1.0 0.0
 }
 }
}

The cycle Command

cycle name { object-properties }

This command creates an animation object, for which all of its children are con-
sidered to be mutually exclusive representations of the same geometry. This
can be used to create an animation sequence. It can also be used to create a list
of different representations that can be selected for a particular object (e.g.
spheres vs. lines for a molecule). The object is made a child of the current ob-
ject, and initial properties can be specified for the object. For example:

cycle Molecule {
 read balls sphere.geom {}
 read stick ball_and_stick.geom {}
 read lines line.geom {}
}

cycle Face {
 read Smile smile.geom {}
 read Frown frown.geom {}
 read Grimace grimace.geom {}
}

Script Language Commands

GEOMETRY VIEWER SCRIPT LANGUAGE B-5

The set_color Command

set_color red green blue

This command sets the color of the object to the specified RGB value. red,
green, and blue must be between 0 and 1.

The set_matrix Command

set_matrix 4x4-matrix

Sets the current transformation to be the 4x4-matrix specified. Supplying a
transformation in this matrix allows you to alter the center of rotation of the
object.

Note that the specified matrix replaces the existing transform. Contrast this
with rotate, translate, and scale, which concatenate transformations with the
existing one.

The set_position Command

set_position x y z

This command sets the position of the object to be the x, y, and z values speci-
fied. Setting the position does not alter the center of rotation of the object.

The set_material Command

set_material ambient diffuse specular spec-exponent transparency \
spec-red spec-green spec-blue

Sets the material properties of the object. All values except for the specular ex-
ponent vary from 0 to 1. The specular exponent, which specifies the rough-
ness of the surface, should lie between 1 (roughest) and 200 (smoothest).

The set_render_style Command

set_render_style style

Sets the rendering method used to draw the object. style should be one of the
following:

lines
gouraud
phong
inherit
flat
smooth_lines
no_light

The rotate Command

rotate angle x y z

Script Language Commands

B-6 GEOMETRY VIEWER SCRIPT LANGUAGE

Rotates the object by angle degrees counterclockwise around the vector (x,y,z).
This transformation is concatenated with the object’s current transform.

The translate Command

translate x y z

Translates the object by the vector (x,y,z). This transformation is concatenated
with the object’s current transform.

The scale Command

rotate angle sx sy sz

Scales the object by sx, sy, and sz in the X, Y, and Z directions. This transforma-
tion is concatenated with the object’s current transform.

Viewing Commands

Views (windows) can be created using the view command. Like objects,
views also have properties. A view should only be specified in a file that has a
.scene extension.

The view Command

view name widthxheight+x+y bkg-red bkg-green bkg-blue
{ view-property-commands }

The following example creates a 500x500 pixel view named "Bob", at offset
100,100 from the upper left corner of the screen, and with a red background.

view Bob 500x500+100+100 1.0 0.0 0.0 { }

The view-property-commands are described in the following sections.

The set_matrix Command

set_matrix 4x4-array-of-floats

This command sets the viewing matrix.

The set_position Command

set_position x y z

This command sets the position of origin of the world coordinate system.

The rotate Command

rotate angle x y z

Script Language Commands

GEOMETRY VIEWER SCRIPT LANGUAGE B-7

Rotates the object by angle degrees counterclockwise around the vector (x,y,z).
This transformation is concatenated with the object’s current transform.

The translate Command

translate x y z

Translates the object by the vector (x,y,z). This transformation is concatenated
with the object’s current transform.

The scale Command

rotate angle sx sy sz

Scales the object by sx, sy, and sz in the X, Y, and Z directions. This transforma-
tion is concatenated with the object’s current transform.

The depth_cue Command

depth_cue

This command turns on depth-cueing in the view.

The inactive Command

inactive

This command sets the initial state of the view to be inactive.

The no_zbuffer Command

no_zbuffer

This command disables Z-buffering of lines in the view.

For example, this command creates a view with a red background, and with
depth-cueing of lines turned on and Z-buffering of lines turned off.

view Joe 100x100+100+200 1.0 0.0 0.0 {
 depth_cue
 no_zbuffer
}

Geometry Viewer Defaults File

For compatibility with Release 1 of AVS, you can specify a "defaults file" to be
read by the Geometry Viewer when you start AVS with the -geometry com-
mand-line option. For example:

avs -geometry -defaults /usr/johnp/avs/geom_windows.dfl

Script Language Commands

B-8 GEOMETRY VIEWER SCRIPT LANGUAGE

The defaults file defines a series of windows, assigning each one a name, a
size and position (in standard X Window System notation), and an RGB back-
ground color. The first window in the series is used for the first Geometry
Viewer window that appears. Subsequent windows are used, in turn, by the
Create Scene and Create Camera functions and by the render geometry or
geometry viewer modules. If the end of the series is reached, additional win-
dows are created with the same size as the last window, but slightly offset
from each other.

Following is a sample Geometry Viewer defaults file:

view JOHNP01 400x400+300+100 1.0 1.0 0.0
view JOHNP02 400x400+750+100 0.0 1.0 1.0
view JOHNP03 300x300+400+500 0.0 1.0 1.0 {
 depth_cue
}

Note that you can set default viewing parameters for the windows you create.
In this example, window JOHNP03 starts with depth-cueing turned on.

NOTE: Release 1 of AVS reads defaults from /usr/avs/runtime/avsrc if you do
not specify a defaults file on the command line.

Lighting Commands

Like viewing commands, lighting commands should only be specified in a
file that has a .scene extension.

The light Command

light type index { lighting-property-commands }

This command turns on a light of type, where type is one of ambient, direc-
tional, or point. The light is given index index and can contain properties
specified in lighting-properties (see below). Light indices should be in the range
of 1 to 16. In the AVS viewing application, a single ambient light source is as-
signed to index 16.

For example, this command turns on light 1, making it a directional light with
the default lighting properties:

light directional 1 {}

The lighting-property-commands are described in the following sections.

The set_matrix Command

set_matrix 4x4 matrix

This command sets the transformation matrix for the light. In the case of di-
rectional lights, only the rotation portion of the matrix is used (although the

Script Language Commands

GEOMETRY VIEWER SCRIPT LANGUAGE B-9

rest of the matrix can be used to affect the graphical display of light vectors).
In the case of a point light, this matrix only affects the graphical representa-
tion of the point light source icon.

The set_position Command

set_position x y z

This command sets the position of point light sources. This attribute does not
affect directional light sources.

The set_color Command

set_color red green blue

This command sets the light source color.

Example Scene File

view AVS 503x529+375+208 0.015686 0.078431 0.196078 {
 set_matrix 0.968946 -0.201782 0.142953 0.000000
 0.246114 0.730629 -0.636879 0.000000
 0.024065 0.652280 0.757599 0.000000
 0.000000 0.000000 0.000000 1.000000
}
light directional 1 {
}
light ambient 16 {
}
read teapot.2 teapot.pobj {
 set_color 0.162 0.046 0.013
 set_material 0.287 0.444 0.931 10.000 0.000 0.990 0.241 0.027
 }
}

Script Language Commands

B-10 GEOMETRY VIEWER SCRIPT LANGUAGE

	Table of Contents
	List of Tables
	Chapter 1 (Introduction to AVS)
	Introduction
	Scientific Visualization Techniques
	The AVS Subsystems
	Command Language Interpreter
	AVS Modules
	AVS Networks
	AVS Display Windows
	An Example
	Note on Platforms
	AVS Documentation

	Chapter 2 (Importing Data into AVS)
	Introduction
	AVS Data Types
	Data Import Strategies
	Field Data
	Geometry Data
	Unstructured Cell Data
	Colormap Data
	Molecule Data Type

	Chapter 3 (Starting AVS)
	Introduction
	Platform Dependencies
	Controlling AVS Startup
	The Main Menu: Basic Interface
	Learning AVS
	Using On-Line Help
	File Browsers and Dialog Typein Panels
	Exiting AVS: Saving Work
	AVS Command-Line Options
	AVS .avsrc Startup File
	AVS Environment Variables
	Adding to the Applications Menu

	Chapter 4 (Image Viewer Subsystem)
	Introduction
	Entering the Image Viewer
	Leaving the Image Viewer
	Image Viewer: Basic Layout
	Images Submenu
	Views Submenu
	Image Processing Submenu
	Defining Image Processing Techniques
	Labels Submenu
	Action Submenu: Flipbook Animation
	Image Viewer Command Language Interpreter

	Chapter 5 (Geometry Viewer Subsystem)
	Introduction
	Renderers
	Entering the Geometry Viewer
	Leaving the Geometry Viewer
	Scenes, Objects, Lights and Cameras
	Objects
	Geometry Viewer Control Panel
	Geometry Viewer Menu Reference
	Geometry Viewer Command Language Interpreter
	High Quality Image Output

	Chapter 6 (Network Editor Subsystem)
	Introduction
	Starting the Network Editor
	Using the Module Palette and the Workspace
	Input/Output Ports
	Controlling the Execution of a Network
	Using the Network Editor Menu System

	Chapter 7 (Graph Viewer Subsystem)
	Introduction
	Entering the Graph Viewer
	Graph Viewer - Basic Interface
	Read Data
	Write Data
	Axis Display
	Titles, Labels and Legends
	Select Plot
	Graph Viewer Command Language Interpreter

	Chapter 8 (Advanced Network Editor)
	Introduction
	Parameter Ports
	Upstream Data Ports
	Editing Tools: Macro Modules
	Layout Editor
	Remote Module Execution
	Constructing a Module Library
	Optimization: Parallel Module Execution
	Optimization: Adaptive Block Tables
	Optimization: Controlling Module Groups and Processes

	Appendix A (AVS on Color X Servers)
	Introduction: Renderers
	Minimum Requirements
	Overall Performance
	Set Up: Startup File Keywords, and Environment Variables
	Starting AVS from a Remote X Server
	Interaction

	Appendix B (Geometry Viewer Script Language)
	Prolog
	Introduction
	Scene Files and Object Files
	Script Language Commands

